Online citations, reference lists, and bibliographies.
← Back to Search

Ca(2+)-induced Mitochondrial Membrane Permeabilization: Role Of Coenzyme Q Redox State

A. J. Kowaltowski, R. F. Castilho, A. E. Vercesi

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Rotenone-poisoned rat liver mitochondria energized by succinate addition, after a 5-min period of preincubation in presence of 10 microM Ca2+, produce H2O2 at much faster rates, undergo extensive swelling, and are not able to retain the membrane potential and accumulated Ca2+. Similar results were obtained when a suspension of rat liver mitochondria preincubated in anaerobic medium for 5 min was reoxygenated. The addition of either ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, ruthenium red, catalase, or dithiothreitol, just before succinate or O2 addition, prevented mitochondrial swelling, indicating the involvement of Ca2+, reactive oxygen species, and oxidation of membrane protein thiols in this process of membrane permeabilization. Inhibition of mitochondrial swelling by cyclosporin A suggests that the membrane alterations observed under these experimental conditions are related to opening of the permeability transition pore. The presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, which prevents Ca2+ cycling across the membrane, did not inhibit mitochondrial swelling when Ca2+ influx into the mitochondrial matrix was driven by a high Ca2+ gradient. When rotenone plus antimycin A-poisoned mitochondria were energized by N,N,N',N'-tetramethyl-p-phenylenediamine, which reduces respiratory chain complex IV, mitochondrial swelling did not occur, unless succinate, which reduces coenzyme Q, was also added. It is concluded that reduced coenzyme Q is the electron source for oxygen radical production during Ca(2+)-stimulated oxidative damage of mitochondria.