Online citations, reference lists, and bibliographies.
← Back to Search

Hydrogen Peroxide-induced Increase In Endothelial Adhesiveness Is Dependent On ICAM-1 Activation

S. K. Lo, K. Janakidevi, L. Lai, A. B. Malik

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Reactive oxygen radicals (ROS) generated by phagocytes promote human polymorphonuclear leukocyte (PMN) adhesion to human umbilical vein endothelial cells (EC). We determined the effects of hydrogen peroxide (H2O2), a phagocyte-derived ROS, on EC adhesiveness by determining steady-state intracellular adhesion molecule 1 (ICAM-1) mRNA and ICAM-1 protein expression. The adhesion of PMN to H2O2-treated EC was concentration dependent with maximal adhesion achieved at 0.1 mM H2O2. PMN adhesion occurred rapidly, reaching its maximum value within a 1-h treatment time. The PMN adhesion was dependent on the interaction between CD11/CD18 integrins on PMN and ICAM-1 on EC, since either anti-CD18 or anti-ICAM-1 monoclonal antibodies (MAbs) inhibited (by > 90%) the adhesive interaction between PMN and EC. In parallel with the increases in EC adhesivity, we detected a two- to threefold increase in EC surface expression of ICAM-1 between 0.5 and 1 h after H2O2 challenge. Northern analysis revealed an increase in the steady-state ICAM-1 mRNA signal within 0.5 h after H2O2 exposure, and the response was sustained up to 2 h. Inhibition of intracellular catalase in H2O2-treated EC by 3-amino-1,2,3-triazole augmented the PMN adhesion by 20%, whereas enhancement of EC H2O2-scavenging activity by addition of catalase abrogated the H2O2-induced PMN adhesion, indicating that oxidant-antioxidant balance at the EC interface is a critical factor modulating PMN-EC adhesive interactions. The results suggest that H2O2-induced PMN adhesion is dependent on the rapid induction of the ICAM-1 mRNA signal and the surface expression of ICAM-1 on EC.(ABSTRACT TRUNCATED AT 250 WORDS)