Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Growth Regulation Of The Vascular System: An Emerging Role For Adenosine

Thomas H. Adair

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
The importance of metabolic factors in the regulation of angiogenesis is well understood. An increase in metabolic activity leads to a decrease in tissue oxygenation causing tissues to become hypoxic. The hypoxia initiates a variety of signals that stimulate angiogenesis, and the increase in vascularity that follows promotes oxygen delivery to the tissues. When the tissues receive adequate amounts of oxygen, the intermediate effectors return to normal levels, and angiogenesis ceases. An emerging concept is that adenosine released from hypoxic tissues has an important role in driving the angiogenesis. The following feedback control hypothesis is proposed: AMP is dephosphorylated by ecto-5′-nucleotidase, producing adenosine under hypoxic conditions in the extracellular space adjacent to a parenchymal cell (e.g., cardiomyocyte, skeletal muscle fiber, hepatocyte, etc.). Extracellular adenosine activates A2 receptors, which stimulates the release of vascular endothelial growth factor (VEGF) from the parenchymal cell. VEGF binds to its receptor (VEGF receptor 2) on endothelial cells, stimulating their proliferation and migration. Adenosine can also stimulate endothelial cell proliferation independently of VEGF, which probably involves modulation of other proangiogenic and antiangiogenic growth factors and perhaps an intracellular mechanism. In addition, hemodynamic factors associated with adenosine-induced vasodilation may have a role in the development and remodeling of the vasculature. Once a new capillary network has been established, and the diffusion/perfusion capabilities of the vasculature are sufficient to supply the parenchymal cells with adequate amounts of oxygen, adenosine and VEGF as well as other proangiogenic and antiangiogenic growth factors return to near-normal levels, thus closing the negative feedback loop. The available data indicate that adenosine might be an essential mediator for up to 50–70% of the hypoxia-induced angiogenesis in some situations; however, additional studies in intact animals will be required to fully understand the quantitative importance of adenosine.