Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Skeletal Muscle Capillarity And Angiogenic MRNA Levels After Exercise Training In Normoxia And Chronic Hypoxia

I. Mark Olfert, Ellen C. Breen, Odile Mathieu-Costello, Peter D. Wagner

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Gene expression of vascular endothelial growth factor (VEGF), and to a lesser extent of transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (bFGF), has been found to increase in rat skeletal muscle after a single exercise bout. In addition, acute hypoxia augments the VEGF mRNA response to exercise, which suggests that, if VEGF is important in muscle angiogenesis, hypoxic training might produce greater capillary growth than normoxic training. Therefore, we examined the effects of exercise training (treadmill running at the same absolute intensity) in normoxia and hypoxia (inspired O2 fraction = 0.12) on rat skeletal muscle capillarity and on resting and postexercise gene expression of VEGF, its major receptors (flt-1 and flk-1), TGF-β1, and bFGF. Normoxic training did not alter basal or exercise-induced VEGF mRNA levels but produced a modest twofold increase in bFGF mRNA ( P < 0.05). Rats trained in hypoxia exhibited an attenuated VEGF mRNA response to exercise (1.8-fold compared 3.4-fold with normoxic training; P< 0.05), absent TGF-β1 and flt-1 mRNA responses to exercise, and an approximately threefold ( P < 0.05) decrease in bFGF mRNA levels. flk-1 mRNA levels were not significantly altered by either normoxic or hypoxic training. An increase in skeletal muscle capillarity was observed only in hypoxically trained rats. These data show that, whereas training in hypoxia potentiates the adaptive angiogenic response of skeletal muscle to a given absolute intensity of exercise, this was not evident in the gene expression of VEGF or its receptors when assessed at the end of training.