Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Emergence Of Intrinsic Bursting In Trigeminal Sensory Neurons Parallels The Acquisition Of Mastication In Weanling Rats

Frédéric Brocard, Dorly Verdier, Isabel Arsenault, James P. Lund, Arlette Kolta

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
There is increasing evidence that a subpopulation of neurons in the dorsal principal sensory trigeminal nucleus are not simple sensory relays to the thalamus but may form the core of the central pattern generating circuits responsible for mastication. In this paper, we used whole cell patch recordings in brain stem slices of young rats to show that these neurons have intrinsic bursting abilities that persist in absence of extracellular Ca2+. Application of different K+ channel blockers affected duration and firing rate of bursts, but left bursting ability intact. Bursting was voltage dependent and was abolished by low concentrations of Na+ channel blockers. The proportion of bursting neurons increased dramatically in the second postnatal week, in parallel with profound changes in several electrophysiological properties. This is the period in which masticatory movements appear and mature. Bursting was associated with the development of an afterdepolarization that depend on maturation of a persistent sodium conductance ( INaP). An interesting finding was that the occurrence of bursting and the magnitude of INaP were both modulated by the extracellular concentration of Ca2+. Lowering extracellular [Ca2+] increased both INaP and probability of bursting. We suggest that these mechanisms underlie burst generation in mastication and that similar processes may be found in other motor pattern generators.