Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Contractile Differences Between Muscle Units In The Medial Rectus And Lateral Rectus Muscles In The Cat

M. A. Meredith, S. J. Goldberg

Save to my Library
Download PDF
Analyze on Scholarcy
Conjugate eye movements in the horizontal plane are accomplished by the coactivation of the medial rectus (MR) muscle of one orbit and the lateral rectus (LR) muscle of the other. While control of these excursions has been thought to be effected by identical inputs to these muscles, recent studies have demonstrated that MR motoneurons receive different inputs than LR motoneurons. This raises the question of whether the character of the muscles they control are different. The present study evaluated the contractile properties of MR and LR muscle units in the cat. Based on the mechanical aspects of their contractile properties, only two physiological types of muscle units were identified within the MR and LR muscles: twitch and non-twitch muscle units. Twitch muscle units represented over 90% of the units sampled in each muscle. Significant differences in the rate-related and the tension-related contractile properties were demonstrated between MR and LR twitch muscle units. MR muscle units exhibited significantly faster twitch contractions than did LR units. The rate of stimulation at which MR units exhibited fused tetany was significantly higher than for LR units, although units from both muscles demonstrated similar rates of rise of tension at fusion. The rate of rise of tension was closely correlated to tension production (twitch and tetanus) in each muscle. However, MR muscle units demonstrated significantly weaker maximum tetanic tensions and lower tetanus-to-twitch ratios than LR units. These data indicate that while similar physiological types of muscle fibers are present within the MR and LR, MR muscle units are adapted for faster rate-related properties, whereas LR units are adapted for greater tetanic tensions. These distinctions between MR and LR muscle units, coupled with differences between the afferent inputs to their respective motoneurons, suggest that the preservation of conjugacy during horizontal gaze shifts may require a complex interaction of peripheral and central factors.