Online citations, reference lists, and bibliographies.
← Back to Search

Free Radicals In The Physiological Control Of Cell Function

Wulf Dröge

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, however, nitric oxide (NO), superoxide anion, and related reactive oxygen species (ROS) play an important role as regulatory mediators in signaling processes. Many of the ROS-mediated responses actually protect the cells against oxidative stress and reestablish “redox homeostasis.” Higher organisms, however, have evolved the use of NO and ROS also as signaling molecules for other physiological functions. These include regulation of vascular tone, monitoring of oxygen tension in the control of ventilation and erythropoietin production, and signal transduction from membrane receptors in various physiological processes. NO and ROS are typically generated in these cases by tightly regulated enzymes such as NO synthase (NOS) and NAD(P)H oxidase isoforms, respectively. In a given signaling protein, oxidative attack induces either a loss of function, a gain of function, or a switch to a different function. Excessive amounts of ROS may arise either from excessive stimulation of NAD(P)H oxidases or from less well-regulated sources such as the mitochondrial electron-transport chain. In mitochondria, ROS are generated as undesirable side products of the oxidative energy metabolism. An excessive and/or sustained increase in ROS production has been implicated in the pathogenesis of cancer, diabetes mellitus, atherosclerosis, neurodegenerative diseases, rheumatoid arthritis, ischemia/reperfusion injury, obstructive sleep apnea, and other diseases. In addition, free radicals have been implicated in the mechanism of senescence. That the process of aging may result, at least in part, from radical-mediated oxidative damage was proposed more than 40 years ago by Harman ( J Gerontol 11: 298–300, 1956). There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.