Online citations, reference lists, and bibliographies.
← Back to Search

Sphingosine 1-phosphate Signaling Contributes To Cardiac Inflammation, Dysfunction, And Remodeling Following Myocardial Infarction

Fuyang Zhang, Yunlong Xia, Wenjuan Yan, Haoqiang Zhang, Fen Zhou, Shihao Zhao, Wei Wang, Di Zhu, Chao Xin, Yan Lee, Ling Zhang, Yuan He, Erhe Gao, Ling Tao

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Sphingosine 1-phosphate (S1P) mediates multiple pathophysiological effects in the cardiovascular system. However, the role of S1P signaling in pathological cardiac remodeling following myocardial infarction (MI) remains controversial. In this study, we found that cardiac S1P greatly increased post-MI, accompanied with a significant upregulation of cardiac sphingosine kinase-1 (SphK1) and S1P receptor 1 (S1PR1) expression. In MI-operated mice, inhibition of S1P production by using PF543 (the SphK1 inhibitor) ameliorated cardiac remodeling and dysfunction. Conversely, interruption of S1P degradation by inhibiting S1P lyase augmented cardiac S1P accumulation and exacerbated cardiac remodeling and dysfunction. In the cardiomyocyte, S1P directly activated proinflammatory responses via a S1PR1-dependent manner. Furthermore, activation of SphK1/S1P/S1PR1 signaling attributed to β1-adrenergic receptor stimulation-induced proinflammatory responses in the cardiomyocyte. Administration of FTY720, a functional S1PR1 antagonist, obviously blocked cardiac SphK1/S1P/S1PR1 signaling, ameliorated chronic cardiac inflammation, and then improved cardiac remodeling and dysfunction in vivo post-MI. In conclusion, our results demonstrate that cardiac SphK1/S1P/S1PR1 signaling plays an important role in the regulation of proinflammatory responses in the cardiomyocyte and targeting cardiac S1P signaling is a novel therapeutic strategy to improve post-MI cardiac remodeling and dysfunction.