Online citations, reference lists, and bibliographies.
← Back to Search

Clinical Utility Of Optical Coherence Tomography In Glaucoma

Z. Dong, G. Wollstein, J. Schuman
Published 2016 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Optical coherence tomography (OCT) has established itself as the dominant imaging modality in the management of glaucoma and retinal diseases, providing high-resolution visualization of ocular microstructures and objective quantification of tissue thickness and change. This article reviews the history of OCT imaging with a specific focus on glaucoma. We examine the clinical utility of OCT with respect to diagnosis and progression monitoring, with additional emphasis on advances in OCT technology that continue to facilitate glaucoma research and inform clinical management strategies.
This paper references
10.1097/00055735-199504000-00014
Optical coherence tomography: A new tool for glaucoma diagnosis
J. Schuman (1995)
10.1167/iovs.10-5222
Reproducibility of peripapillary retinal nerve fiber layer thickness and optic nerve head parameters measured with cirrus HD-OCT in glaucomatous eyes.
Jean-Claude Mwanza (2010)
10.4103/0301-4738.158064
Reproducibility of retinal nerve fiber layer measurements across the glaucoma spectrum using optical coherence tomography
J. Vazirani (2015)
10.1167/iovs.09-5067
Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements.
U. Schiefer (2010)
10.1136/bjophthalmol-2011-301021
Glaucoma discrimination of segmented cirrus spectral domain optical coherence tomography (SD-OCT) macular scans
J. Kotowski (2012)
10.3109/02713683.2015.1052519
Lamina Cribrosa-Related Parameters Assessed by Optical Coherence Tomography for Prediction of Future Glaucoma Progression
Ho Seok Chung (2016)
10.1001/archopht.126.11.1500
Regional relationship between retinal nerve fiber layer thickness and corresponding visual field sensitivity in glaucomatous eyes.
A. Kanamori (2008)
10.1038/nrn1348
The role of fixational eye movements in visual perception
S. Martinez-Conde (2004)
10.1016/j.ophtha.2010.01.031
Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis.
H. Rao (2010)
10.1001/archophthalmol.2009.276
Prediction of functional loss in glaucoma from progressive optic disc damage.
F. Medeiros (2009)
10.1007/s10384-003-0058-3
Symmetry Analysis for Detecting Early Glaucomatous Changes in Ocular Hypertension Using Optical Coherence Tomography
M. Sugimoto (2003)
10.1097/IJG.0000000000000045
Analysis of Macular and Peripapillary Choroidal Thickness in Glaucoma Patients by Enhanced Depth Imaging Optical Coherence Tomography
H. Park (2014)
10.1038/eye.2010.202
Assessment of rates of structural change in glaucoma using imaging technologies
K. Mansouri (2011)
10.1016/j.ophtha.2011.07.033
Enhanced depth imaging detects lamina cribrosa thickness differences in normal tension glaucoma and primary open-angle glaucoma.
H. Park (2012)
10.1097/IJG.0b013e318032e4d4
Glaucoma Detection by Stratus OCT
J. Hougaard (2007)
10.1007/s00417-015-3095-y
Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study
X. Wang (2015)
Diagnostic Ability of Fourier-Domain vs Time-Domain Optical Coherence Tomography for Glaucoma Detection
J. D. Cascajosa (2010)
10.1093/brain/awr264
Optical coherence tomography segmentation reveals ganglion cell layer pathology after optic neuritis.
S. Syc (2012)
10.1167/iovs.12-9786
Longitudinal analysis of progression in glaucoma using spectral-domain optical coherence tomography.
J. Wessel (2013)
10.1167/TVST.4.6.4
Central Glaucomatous Damage of the Macula Can Be Overlooked by Conventional OCT Retinal Nerve Fiber Layer Thickness Analyses.
Diane L. Wang (2015)
10.1167/iovs.11-9369
Detection of glaucoma progression by assessment of segmented macular thickness data obtained using spectral domain optical coherence tomography.
J. Na (2012)
10.1097/00006324-198606000-00010
Frequency Distribution of Early Glaucomatous Visual Field Defects
D. Henson (1986)
10.1097/APO.0000000000000183
Ocular Blood Flow and Influencing Factors for Glaucoma
T. Nakazawa (2016)
10.1001/archophthalmol.2009.296
Comparison of glaucoma diagnostic Capabilities of Cirrus HD and Stratus optical coherence tomography.
S. B. Park (2009)
10.1136/bjo.2009.163493
Comparative study of retinal nerve fibre layer measurement by RTVue OCT and GDx VCC
X. Wang (2010)
10.2147/OPTH.S50120
Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures
Atsuya Miki (2013)
10.1016/S0161-6420(95)31032-9
Imaging of macular diseases with optical coherence tomography.
C. Puliafito (1995)
10.1167/IOVS.05-1584
Optic disc and visual field progression in ocular hypertensive subjects: detection rates, specificity, and agreement.
N. Strouthidis (2006)
10.4103/0301-4738.171965
Diagnostic accuracy of posterior pole asymmetry analysis parameters of spectralis optical coherence tomography in detecting early unilateral glaucoma
Paaraj Dave (2015)
10.1001/jama.2014.3192
The pathophysiology and treatment of glaucoma: a review.
R. Weinreb (2014)
10.1016/j.ajo.2012.07.005
Retinal nerve fiber layer atrophy is associated with visual field loss over time in glaucoma suspect and glaucomatous eyes.
M. Sehi (2013)
10.1371/journal.pone.0125957
Diagnostic Ability of Macular Ganglion Cell Inner Plexiform Layer Measurements in Glaucoma Using Swept Source and Spectral Domain Optical Coherence Tomography
Z. Yang (2015)
10.1167/IOVS.06-1407
Evaluation of optical coherence tomography and heidelberg retinal tomography parameters in detecting early and moderate glaucoma.
P. Naithani (2007)
10.1001/ARCHOPHT.123.4.464
Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma.
G. Wollstein (2005)
10.1167/iovs.14-15942
Lamina Cribrosa Depth Variation Measured by Spectral-Domain Optical Coherence Tomography Within and Between Four Glaucomatous Optic Disc Phenotypes.
Y. Sawada (2015)
10.1016/J.OPHTHA.2007.03.005
Diagnostic capability of optical coherence tomography (Stratus OCT 3) in early glaucoma.
R. Parikh (2007)
Three-dimensional imaging of lamina cribrosa defects in glaucoma using sweptsource optical coherence tomography
K Takayama (2013)
10.1007/s00417-010-1585-5
Diagnostic ability of retinal ganglion cell complex, retinal nerve fiber layer, and optic nerve head measurements by Fourier-domain optical coherence tomography
A. Schulze (2010)
10.1001/ARCHOPHT.121.5.643
Classification of visual field abnormalities in the ocular hypertension treatment study.
J. Keltner (2003)
10.1007/s10384-012-0128-5
Enhanced depth imaging spectral-domain optical coherence tomography of subfoveal choroidal thickness in normal Japanese eyes
A. Fujiwara (2012)
10.3109/02713683.2013.867353
Prediction of Glaucomatous Visual Field Progression: Pointwise analysis
Kilhwan Shon (2014)
10.1167/iovs.09-4258
Macular and peripapillary retinal nerve fiber layer measurements by spectral domain optical coherence tomography in normal-tension glaucoma.
M. Seong (2010)
10.1111/J.1600-0420.2006.00826.X
Glaucoma detection using different Stratus optical coherence tomography protocols.
J. Hougaard (2007)
10.1016/j.ophtha.2009.04.013
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study.
C. Leung (2009)
10.3109/02713683.2012.742913
Progression of Retinal Nerve Fiber Layer Thinning in Glaucoma Assessed by Cirrus Optical Coherence Tomography-guided Progression Analysis
J. Na (2013)
10.1016/j.ophtha.2011.07.012
Enhanced depth imaging optical coherence tomography of deep optic nerve complex structures in glaucoma.
S. Park (2012)
10.1097/IJG.0b013e318259b2e1
The Applicability of Ganglion Cell Complex Parameters Determined From SD-OCT Images to Detect Glaucomatous Eyes
Paramastri Arintawati (2013)
10.1155/2015/746150
Factors Affecting Cirrus-HD OCT Optic Disc Scan Quality: A Review with Case Examples
Joshua S. Hardin (2015)
Spectral domain optical coherence tomography for glaucoma (an AOS thesis).
J. Schuman (2008)
10.1097/IJG.0b013e31815768c4
Detection of Early Glaucoma With Optical Coherence Tomography (StratusOCT)
K. Nouri-Mahdavi (2008)
10.1136/bjo.2003.019281
Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes
G. Tezel (2004)
10.1167/iovs.12-11268
Comparative assessment for the ability of Cirrus, RTVue, and 3D-OCT to diagnose glaucoma.
Azusa Akashi (2013)
10.1097/ICU.0b013e32835d9e27
Diagnosis of glaucoma and detection of glaucoma progression using spectral domain optical coherence tomography
D. Grewal (2013)
10.1111/j.1442-9071.2010.02462.x
Glaucomatous optic neuropathy evaluation project: a standardized internet system for assessing skills in optic disc examination
Yu Xiang G Kong (2011)
10.1016/0197-2456(94)90046-9
The Advanced Glaucoma Intervention Study (AGIS): 1. Study design and methods and baseline characteristics of study patients.
F. Ederer (1994)
10.1167/iovs.11-7962
Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma.
Jean-Claude Mwanza (2011)
10.3109/08820539809056053
Optical coherence tomography.
G. Ripandelli (1998)
Repeatability of the Glaucoma Hemifield Test in automated perimetry.
J. Katz (1995)
Glaucoma. Lancet. 2011;377:1367–1377
HA Quigley (2011)
10.1016/j.ajo.2013.04.016
From clinical examination of the optic disc to clinical assessment of the optic nerve head: a paradigm change.
B. Chauhan (2013)
10.1111/j.1755-3768.2010.01977.x
Performance of time-domain and spectral-domain Optical Coherence Tomography for glaucoma screening
B. Bengtsson (2012)
10.1364/BOE.5.001114
Repeatability of in vivo 3D lamina cribrosa microarchitecture using adaptive optics spectral domain optical coherence tomography.
Zach Nadler (2014)
10.1001/ARCHOPHT.1992.01080140062028
Rate and pattern of neuroretinal rim area decrease in ocular hypertension and glaucoma.
P. Airaksinen (1992)
10.1038/eye.2010.139
Diagnostic accuracy of nerve fibre layer, macular thickness and optic disc measurements made with the RTVue-100 optical coherence tomograph to detect glaucoma
A. Garas (2011)
10.1167/iovs.11-7833
Macular and retinal nerve fiber layer thickness: which is more helpful in the diagnosis of glaucoma?
J. Na (2011)
10.1097/ICU.0000000000000231
Optical coherence tomography platforms and parameters for glaucoma diagnosis and progression
Jean-Claude Mwanza (2016)
10.1016/j.ajo.2008.12.032
Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements.
A. O. González-García (2009)
10.1016/j.ophtha.2010.06.036
Ability of cirrus HD-OCT optic nerve head parameters to discriminate normal from glaucomatous eyes.
Jean-Claude Mwanza (2011)
Prevalence and nature of early glaucomatous defects in the central 10 degrees of the visual field
I Traynis (2014)
10.1016/S0002-9394(03)00792-X
Optical coherence tomography to detect and manage retinal disease and glaucoma.
G. Jaffe (2004)
10.1136/bjo.2010.186924
Imaging of the retinal nerve fibre layer with spectral domain optical coherence tomography for glaucoma diagnosis
K. Sung (2010)
10.1016/j.ophtha.2012.12.014
Detection of glaucomatous progression by spectral-domain optical coherence tomography.
J. Na (2013)
10.1097/IJG.0000000000000231
Pattern of Macular Ganglion Cell-Inner Plexiform Layer Defect Generated by Spectral-Domain OCT in Glaucoma Patients and Normal Subjects
Jae Seung Jeong (2015)
10.3928/1542-8877-19871201-07
Comparison of optic disc features in low-tension and typical open-angle glaucoma.
K. M. Miller (1987)
10.1167/iovs.14-15375
Enhanced structure-function relationship in glaucoma with an anatomically and geometrically accurate neuroretinal rim measurement.
V. M. Danthurebandara (2014)
10.1016/j.ophtha.2010.11.029
Comparison of the diagnostic accuracies of the Spectralis, Cirrus, and RTVue optical coherence tomography devices in glaucoma.
M. T. Leite (2011)
10.1167/iovs.10-5572
Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography.
Yuriko Kotera (2011)
10.1016/j.ophtha.2013.05.009
Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure.
H. Mak (2013)
10.1016/j.ajo.2008.12.008
A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes.
R. Margolis (2009)
10.1002/jbio.200710009
Retinal nerve fiber layer birefringence evaluated with polarization sensitive spectral domain OCT and scanning laser polarimetry: a comparison.
E. Goetzinger (2008)
10.1055/s-0034-1368213
Posterior pole asymmetry analysis with optical coherence tomography.
L Kochendörfer (2014)
10.1364/OE.20.004710
Split-spectrum amplitude-decorrelation angiography with optical coherence tomography
Y. Jia (2012)
10.1097/IJG.0000000000000336
Segmental Analysis of Macular Layers in Patients With Unilateral Primary Open-Angle Glaucoma
C. Zangalli (2016)
10.1016/S0161-6420(99)90497-9
Early Manifest Glaucoma Trial: design and baseline data.
M. C. Leske (1999)
Location of early glaucomatous visual field defects.
S. Nicholas (1980)
10.2147/OPTH.S44586
Strategies for improving early detection of glaucoma: the combined structure–function index
A. Tatham (2014)
10.1364/OE.17.022190
Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique.
Jeff Fingler (2009)
10.1364/OE.17.004095
Volumetric retinal imaging with ultrahigh-resolution spectral-domain optical coherence tomography and adaptive optics using two broadband light sources.
B. Cense (2009)
10.1038/srep24086
Microsaccades enable efficient synchrony-based coding in the retina: a simulation study
Timothée Masquelier (2016)
10.1016/j.ophtha.2011.12.014
Glaucoma diagnostic accuracy of ganglion cell-inner plexiform layer thickness: comparison with nerve fiber layer and optic nerve head.
Jean-Claude Mwanza (2012)
10.1167/iovs.11-7507
Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement.
Shu Liu (2011)
10.1111/j.1755-3768.1984.tb03979.x
THE FREQUENCY DISTRIBUTION OF EARLIEST GLAUCOMATOUS VISUAL FIELD DEFECTS DOCUMENTED BY AUTOMATIC PERIMETRY
A. Heijl (1984)
10.1167/iovs.09-3715
Detection of glaucoma progression with stratus OCT retinal nerve fiber layer, optic nerve head, and macular thickness measurements.
F. Medeiros (2009)
10.2174/1874364101509010068
Spectral-Domain Optical Coherence Tomography for Glaucoma Diagnosis
C. P. Gracitelli (2015)
10.1167/iovs.13-11677
Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography.
K. Takayama (2013)
10.1167/iovs.11-9309
Influence of clinically invisible, but optical coherence tomography detected, optic disc margin anatomy on neuroretinal rim evaluation.
Alexandre S C Reis (2012)
10.1038/nrdp.2016.67
Primary open-angle glaucoma
R. Weinreb (2016)
10.1167/iovs.09-5053
Structure-function relationship and diagnostic value of macular ganglion cell complex measurement using Fourier-domain OCT in glaucoma.
N. Kim (2010)
10.1001/ARCHOPHT.1980.01020030486010
The mode of progressive disc cupping in ocular hypertension and glaucoma.
J. E. Pederson (1980)
10.1016/j.ophtha.2011.08.022
Progression detection capability of macular thickness in advanced glaucomatous eyes.
K. Sung (2012)
depth imaging optical coherence tomography
(2014)
10.1136/bjophthalmol-2012-301845
Macular assessment using optical coherence tomography for glaucoma diagnosis
K. Sung (2012)
10.1016/j.ophtha.2012.09.055
Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter.
B. Chauhan (2013)
10.1167/iovs.15-16483
Three-Dimensional Morphometric Analysis of the Iris by Swept-Source Anterior Segment Optical Coherence Tomography in a Caucasian Population.
A. Invernizzi (2015)
10.1016/J.AJO.2005.08.023
Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma.
A. Manassakorn (2006)
10.3129/i09-106
Comparison of retinal nerve fibre layer measurements from time domain and spectral domain optical coherence tomography systems.
Davin E Johnson (2009)
10.1097/IJG.0b013e3182071cc7
Detection of Progressive Retinal Nerve Fiber Layer Thickness Loss With Optical Coherence Tomography Using 4 Criteria for Functional Progression
D. Grewal (2012)
10.1016/j.ophtha.2010.12.035
Evaluation of retinal nerve fiber layer progression in glaucoma a prospective analysis with neuroretinal rim and visual field progression.
C. K. S. Leung (2011)
10.1167/iovs.08-2405
Correlation between local glaucomatous visual field defects and loss of nerve fiber layer thickness measured with polarimetry and spectral domain OCT.
F. Horn (2009)
10.1016/J.OPHTHA.2006.05.073
Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes.
W. Nolan (2007)
10.1016/j.preteyeres.2012.08.003
Glaucomatous damage of the macula
D. Hood (2013)
10.1167/iovs.13-13130
Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region.
D. Hood (2014)
10.1097/IJG.0000000000000280
Evaluation of the Retinal Nerve Fiber Layer Thickness, the Mean Deviation, and the Visual Field Index in Progressive Glaucoma
Sebastián A. Banegas (2016)
10.1016/J.AJO.2004.08.069
Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography.
F. Medeiros (2005)
10.1016/S0002-9394(14)74482-4
Changes in optic disk characteristics and number of nerve fibers in experimental glaucoma.
R. Varma (1992)
Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis.
H. Quigley (1995)
10.1016/S0161-6420(13)31694-7
Pattern of glaucomatous neuroretinal rim loss.
J. Jonas (1993)
10.1001/ARCHOPHT.1977.04450120055003
The nerve fiber layer in the diagnosis of glaucoma.
A. Sommer (1977)
10.1097/IJG.0b013e31818159cb
Artifacts on the Optic Nerve Head Analysis of the Optical Coherence Tomography in Glaucomatous and Nonglaucomatous Eyes
Julio de León Ortega (2009)
10.1007/s10237-010-0240-8
The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach
R. Grytz (2011)
10.1016/J.OPHTHA.2007.08.011
Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis.
O. Tan (2008)
10.1016/j.ophtha.2015.06.015
Estimating Lead Time Gained by Optical Coherence Tomography in Detecting Glaucoma before Development of Visual Field Defects.
Tammy M. Kuang (2015)
10.1167/iovs.10-7111
Combining structural and functional measurements to improve detection of glaucoma progression using Bayesian hierarchical models.
F. Medeiros (2011)
10.1016/j.ophtha.2012.12.006
Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma.
Isabel Lai (2013)
10.1167/iovs.12-9673
Detection of localized retinal nerve fiber layer defects with posterior pole asymmetry analysis of spectral domain optical coherence tomography.
J. Seo (2012)
10.1016/j.ophtha.2009.05.025
Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography.
O. Tan (2009)
10.1097/IJG.0b013e318220dbb7
Glaucoma Diagnostic Capabilities of Optic Nerve Head Parameters as Determined by Cirrus HD Optical Coherence Tomography
K. Sung (2012)
10.1167/iovs.13-11676
Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma.
Renato Lisboa (2013)
Optical Coherence Tomography in Glaucoma IOVS j Special Issue j
Threedimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography visual field index in progressive glaucoma
Y Kotera (2011)
10.1167/iovs.08-2127
Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head.
V. Srinivasan (2008)
10.1016/j.artmed.2015.04.002
Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression
Akram Belghith (2015)
10.1097/IJG.0000000000000290
Evaluation of a New Software Version of the RTVue Optical Coherence Tomograph for Image Segmentation and Detection of Glaucoma in High Myopia
Gábor Holló (2016)
10.1117/1.3302806
Doppler variance imaging for three-dimensional retina and choroid angiography.
Lingfeng Yu (2010)
10.1016/S0002-9394(14)72726-6
Association between quantitative nerve fiber layer measurement and visual field loss in glaucoma.
R. Weinreb (1995)
10.1016/j.ophtha.2014.01.021
Optical coherence tomography angiography of optic disc perfusion in glaucoma.
Y. Jia (2014)
10.1167/iovs.08-1682
Ability of Stratus OCT to detect progressive retinal nerve fiber layer atrophy in glaucoma.
Eun Ji Lee (2009)
10.4103/0301-4738.169787
Anterior segment imaging in glaucoma: An updated review
Jessica S Maslin (2015)
10.1097/IJG.0000000000000387
Lamina Cribrosa Depth is Associated With the Cup-to-Disc Ratio in Eyes With Large Optic Disc Cupping and Cup-to-Disc Ratio Asymmetry
K. I. Jung (2016)
10.1136/bjo.2005.081224
The number of people with glaucoma worldwide in 2010 and 2020
H. Quigley (2006)
10.1038/sj.eye.6702101
Morphometric assessment of normal, suspect and glaucomatous optic discs with Stratus OCT and HRT II
M. Iliev (2006)
10.1586/17434440.2013.827505
Improved visualization of deep ocular structures in glaucoma using high penetration optical coherence tomography
Kaweh Mansouri (2013)
10.1016/J.OPHTHA.2004.01.029
Detection of undiagnosed glaucoma by eye health professionals.
E. Wong (2004)
10.1016/J.AJO.2005.10.017
Relationship between patterns of visual field loss and retinal nerve fiber layer thickness measurements.
E. Hoffmann (2006)
10.1016/j.preteyeres.2004.10.002
Longitudinal changes in the visual field and optic disc in glaucoma
P. Artes (2005)
10.5301/ejo.5000576
Influence of a New Software Version of the RTVue-100 Optical Coherence Tomograph on the Detection of Glaucomatous Structural Progression
G. Holló (2015)
10.1002/CNE.903000103
Topography of ganglion cells in human retina
C. Curcio (1990)
10.1016/j.ophtha.2008.12.032
Comparison of retinal nerve fiber layer measurements using time domain and spectral domain optical coherent tomography.
O'Rese J Knight (2009)
10.1016/j.ophtha.2010.01.026
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection.
C. Leung (2010)
10.1167/iovs.11-7848
Three-dimensional evaluation of the lamina cribrosa using spectral-domain optical coherence tomography in glaucoma.
Eun Ji Lee (2012)
10.1016/j.exer.2010.09.005
A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma.
C. Burgoyne (2011)
10.1136/bjo.87.1.107
Measurement error of visual field tests in glaucoma
P. Spry (2003)
10.1097/IJG.0000000000000260
Development of Glaucomatous Visual Field Defects in Preperimetric Glaucoma Patients Within 3 Years of Diagnosis
Hiroko Inuzuka (2016)
10.1016/S0161-6420(99)90147-1
The Collaborative Initial Glaucoma Treatment Study: study design, methods, and baseline characteristics of enrolled patients.
D. Musch (1999)
10.1016/S0161-6420(96)30410-7
Reproducibility of nerve fiber layer thickness measurements using optical coherence tomography.
J. Schuman (1996)
10.1136/bjo.80.5.389
Number of people with glaucoma worldwide.
H. Quigley (1996)
10.1136/bjo.87.9.1135
The correlation between optic nerve head topographic measurements, peripapillary nerve fibre layer thickness, and visual field indices in glaucoma
Y. Lan (2003)
10.1001/jamaophthalmol.2015.2225
Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma.
Liang Liu (2015)
10.1167/iovs.09-3468
Evaluation of retinal nerve fiber layer progression in glaucoma: a study on optical coherence tomography guided progression analysis.
C. Leung (2010)
10.1007/s00417-014-2636-0
Sectoral variations of iridocorneal angle width and iris volume in Chinese Singaporeans: a swept-source optical coherence tomography study
T. Tun (2014)
10.1136/bjo.2003.036020
Three dimensional analysis of the lamina cribrosa in glaucoma
J. Morgan-Davies (2004)
10.1001/jamaophthalmol.2013.7656
Prevalence and nature of early glaucomatous defects in the central 10° of the visual field.
Ilana Traynis (2014)
10.1167/iovs.11-8644
Retinal nerve fiber layer thickness reproducibility using seven different OCT instruments.
L. Pierro (2012)
10.1016/j.ajo.2014.10.019
Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma.
Zhiyong Yang (2015)
10.1016/S0014-4835(95)80056-5
Programmed cell death of retinal ganglion cells during experimental glaucoma.
E. Garcia-Valenzuela (1995)
10.1016/0002-9394(89)90488-1
Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma.
H. Quigley (1989)
10.1364/OL.13.000186
Eye-length measurement by interferometry with partially coherent light.
A. Fercher (1988)
10.1016/j.ajo.2009.04.029
Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes.
T. Fujiwara (2009)
10.1038/eye.2015.162
Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa
Y. Kim (2015)
10.1167/iovs.10-5803
Initial arcuate defects within the central 10 degrees in glaucoma.
Donald C. Hood (2011)
10.1371/journal.pone.0095526
Reproducibility of In-Vivo OCT Measured Three-Dimensional Human Lamina Cribrosa Microarchitecture
Bo Wang (2014)
10.1136/bjo.86.2.238
The definition and classification of glaucoma in prevalence surveys
P. Foster (2002)
10.1016/j.ajo.2013.11.008
Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging.
H. Park (2014)
10.1136/bjo.2006.107409
How should diagnostic tests be evaluated in glaucoma?
F. A. Medeiros (2007)
10.1016/j.ajo.2011.11.015
Combining structural and functional measurements to improve estimates of rates of glaucomatous progression.
F. Medeiros (2012)
Split-spectrum amplitudedecorrelation angiography with optical coherence tomography
Y Jia (2012)
10.1167/iovs.09-4110
Retinal nerve fiber layer thickness measurement comparability between time domain optical coherence tomography (OCT) and spectral domain OCT.
J. Kim (2010)
10.1016/j.ophtha.2013.07.040
Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography.
K. Mansouri (2013)
10.1001/ARCHOPHT.1991.01080010079037
Clinically detectable nerve fiber atrophy precedes the onset of glaucomatous field loss.
A. Sommer (1991)
10.1136/bjo.2010.196907
Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point
G. Wollstein (2011)
10.1167/iovs.13-13482
Structure-function relationships with spectral-domain optical coherence tomography retinal nerve fiber layer and optic nerve head measurements.
F. Pollet-Villard (2014)
10.1016/j.ajo.2015.11.029
Predicting Development of Glaucomatous Visual Field Conversion Using Baseline Fourier-Domain Optical Coherence Tomography.
X. Zhang (2016)
10.1371/journal.pone.0147964
Comparison of the Abilities of SD-OCT and SS-OCT in Evaluating the Thickness of the Macular Inner Retinal Layer for Glaucoma Diagnosis
K. Lee (2016)
10.1167/TVST.1.1.3
The Nature of Macular Damage in Glaucoma as Revealed by Averaging Optical Coherence Tomography Data.
D. Hood (2012)
10.1167/iovs.13-13109
In vivo lamina cribrosa micro-architecture in healthy and glaucomatous eyes as assessed by optical coherence tomography.
Bo Wang (2013)
10.1136/bjo.2009.157875
Retinal nerve fibre layer thickness measurement reproducibility improved with spectral domain optical coherence tomography
J. S. Kim (2009)
Location of early glaucomatous visual field defects.
Nicholas Sp (1980)
10.1016/S0140-6736(15)00108-7
Lancet
B. Bynum (2015)
10.1364/OL.22.000340
Optical coherence tomography using a frequency-tunable optical source.
S. Chinn (1997)
10.1016/S0161-6420(92)32018-4
An evaluation of optic disc and nerve fiber layer examinations in monitoring progression of early glaucoma damage.
H. Quigley (1992)
10.1016/S0161-6420(03)00860-1
Retinal nerve fiber layer thickness measured with optical coherence tomography is related to visual function in glaucomatous eyes.
Tarek A El Beltagi (2003)
10.5455/medarh.2014.68.113-116
Correlation Between Retinal Nerve Fiber Layer and Disc Parameters in Glaucoma Suspected Eyes
S. Kasumovic (2014)
10.1001/ARCHOPHT.122.6.827
Comparison of the GDx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma.
F. Medeiros (2004)
10.1167/iovs.14-15501
Diagnostic ability of macular nerve fiber layer thickness using new segmentation software in glaucoma suspects.
J. Martínez-de-la-Casa (2014)
10.1001/archophthalmol.2011.242
Novel software strategy for glaucoma diagnosis: asymmetry analysis of retinal thickness.
S. Asrani (2011)
10.1167/iovs.09-4716
Effect of disease severity on the performance of Cirrus spectral-domain OCT for glaucoma diagnosis.
M. T. Leite (2010)
10.1001/ARCHOPHT.1984.01040030281019
Early foveal involvement and generalized depression of the visual field in glaucoma.
J. L. Anctil (1984)



This paper is referenced by
10.1117/1.JMI.4.4.041306
Dimension reduction technique using a multilayered descriptor for high-precision classification of ovarian cancer tissue using optical coherence tomography: a feasibility study
C. St-Pierre (2017)
10.1016/j.ophtha.2018.12.033
From Machine to Machine: An OCT-trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs
F. Medeiros (2019)
10.1177/1120672118795062
Normative posterior pole asymmetry analysis data in healthy Caucasian population
Çiğdem Altan (2018)
Modélisation statistique des structures anatomiques de la rétine à partir d'images de fond d'oeil
F. Girard (2018)
10.21516/2072-0076-2019-12-3-43-49
OCT angiography in a comprehensive assessment of hypotensive therapy effectiveness in patients with primary open-angle glaucoma
T. N. Yurieva (2019)
10.1007/978-3-319-94905-5_13
Cirrus HD-OCT’s Guided Progression Analysis
Ahmet Akman (2018)
10.2147/OPTH.S168033
Retinal nerve fiber layer thickness after laser-assisted subepithelial keratomileusis and femtosecond LASIK: a prospective observational cohort study
A. Katsanos (2018)
10.1080/02713683.2019.1604971
Comparison of the Lamina Cribrosa Measurements Obtained by Spectral-Domain and Swept-Source Optical Coherence Tomography
Semih Çakmak (2019)
10.1136/bjophthalmol-2019-314607
Exploring the gap between diagnostic research outputs and clinical use of OCT for diagnosing glaucoma
Manuele Michelessi (2019)
10.3390/ijms19010282
Enhancement in Corneal Permeability of Dissolved Carteolol by Its Combination with Magnesium Hydroxide Nanoparticles
N. Nagai (2018)
10.1167/tvst.9.2.42
A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression
A. C. Thompson (2020)
10.1016/j.ajo.2019.11.006
Human versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs.
A. Jammal (2019)
10.1109/EMBC44109.2020.9175828
Automated circumpapillary retinal nerve fiber layer segmentation in high-resolution swept-source OCT
A. P. Yow (2020)
10.1097/IJG.0000000000000771
Prevalence and Associated Factors of Segmentation Errors in the Peripapillary Retinal Nerve Fiber Layer and Macular Ganglion Cell Complex in Spectral-domain Optical Coherence Tomography Images
A. Miki (2017)
10.1007/978-3-319-94905-5_3
Role of Optical Coherence Tomography in Glaucoma
Ahmet Akman (2018)
Developing an individualized structure-function approach for early detection of progression. BY SAMPSON LISTOWELL ABU, OD; KOOSHA
K. Ramezani (2019)
10.1364/BOE.8.002697
Automatic and robust segmentation of endoscopic OCT images and optical staining.
J. Zhang (2017)
10.1007/978-3-319-94905-5_8
Artifacts and Anatomic Variations in Optical Coherence Tomography.
Atilla Bayer (2020)
10.1016/j.ophtha.2018.05.020
Can Macula and Optic Nerve Head Parameters Detect Glaucoma Progression in Eyes with Advanced Circumpapillary Retinal Nerve Fiber Layer Damage?
Fabio Lavinsky (2018)
10.1016/j.neuroimage.2019.03.058
Incorporating non-linear alignment and multi-compartmental modeling for improved human optic nerve diffusion imaging
Joo-won Kim (2019)
10.4274/tjo.galenos.2019.78000
Artifacts and Anatomic Variations in Optical Coherence Tomography
Atilla Bayer (2020)
10.1111/aos.14448
Diagnostic ability of spectral-domain optical coherence tomography peripapillary retinal nerve fiber layer thickness to discriminate glaucoma patients from controls in an elderly population (The MONTRACHET study).
L. Arnould (2020)
10.1016/J.OGLA.2018.11.007
Dynamic Range of the Peripapillary Retinal Vessel Density for Detecting Glaucomatous Visual Field Damage.
Gyu-nam Kim (2019)
10.1016/j.survophthal.2020.03.002
Macular Imaging with Optical Coherence Tomography in Glaucoma.
Vahid Mohammadzadeh (2020)
10.1364/BOE.8.005049
Automated drusen detection in dry age-related macular degeneration by multiple-depth, en face optical coherence tomography.
Rui Zhao (2017)
10.1111/vop.12633
Spectral domain optical coherence tomography evaluation of the feline optic nerve and peripapillary retina.
Filipe Espinheira Gomes (2019)
10.1007/978-3-319-94905-5
Optical Coherence Tomography in Glaucoma
N. Radcliffe (2018)
10.37685/UIWLIBRARIES.2575-7717.2.1.1011
Case Series: Discordance Between Visible Retinal Nerve Fiber Layer Defects and Spectral Domain Optical Coherence Tomographic Analysis in Patients with Glaucoma
Joseph Sowka Od (2020)
10.1016/j.ophtha.2017.10.011
The Future of Imaging in Detecting Glaucoma Progression.
Fabio Lavinsky (2017)
10.1007/978-981-13-8457-8_2
What’s New in Structural Tests for Glaucoma
Carina Tôrres Sanvicente (2019)
10.1371/journal.pone.0198397
Diagnostic ability of inner macular layers to discriminate early glaucomatous eyes using vertical and horizontal B-scan posterior pole protocols
M. Bambo (2018)
10.4103/tjo.tjo_106_17
Glaucoma suspects: A practical approach
S. Ahmad (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar