Online citations, reference lists, and bibliographies.
← Back to Search

Evidence Synthesis For Decision Making 2

Sofia Dias, Alex J. Sutton, A. E. Ades, Nicky J. Welton

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
We set out a generalized linear model framework for the synthesis of data from randomized controlled trials. A common model is described, taking the form of a linear regression for both fixed and random effects synthesis, which can be implemented with normal, binomial, Poisson, and multinomial data. The familiar logistic model for meta-analysis with binomial data is a generalized linear model with a logit link function, which is appropriate for probability outcomes. The same linear regression framework can be applied to continuous outcomes, rate models, competing risks, or ordered category outcomes by using other link functions, such as identity, log, complementary log-log, and probit link functions. The common core model for the linear predictor can be applied to pairwise meta-analysis, indirect comparisons, synthesis of multiarm trials, and mixed treatment comparisons, also known as network meta-analysis, without distinction. We take a Bayesian approach to estimation and provide WinBUGS program code for a Bayesian analysis using Markov chain Monte Carlo simulation. An advantage of this approach is that it is straightforward to extend to shared parameter models where different randomized controlled trials report outcomes in different formats but from a common underlying model. Use of the generalized linear model framework allows us to present a unified account of how models can be compared using the deviance information criterion and how goodness of fit can be assessed using the residual deviance. The approach is illustrated through a range of worked examples for commonly encountered evidence formats.