Online citations, reference lists, and bibliographies.
← Back to Search

Spatial Constraints Within The Chlamydial Host Cell Inclusion Predict Interrupted Development And Persistence

Alexander Hoare, Peter Timms, Patrik M Bavoil, David P Wilson

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Abstract Background The chlamydial developmental cycle involves the alternation between the metabolically inert elementary body (EB) and the replicating reticulate body (RB). The triggers that mediate the interchange between these particle types are unknown and yet this is crucial for understanding basic Chlamydia biology. Presentation of the hypothesis We have proposed a hypothesis to explain key chlamydial developmental events whereby RBs are replicating strictly whilst in contact with the host cell membrane-derived inclusion via type three secretion (T3S) injectisomes. As the inclusion expands, the contact between each RB and the inclusion membrane decreases, eventually reaching a threshold, beyond which T3S is inactivated upon detachment and this is the signal for RB-to-EB differentiation. Testing the hypothesis We explore this hypothesis through the development of a detailed mathematical model. The model uses knowledge and data of the biological system wherever available and simulates the chlamydial developmental cycle under the assumptions of the hypothesis in order to predict various outcomes and implications under a number of scenarios. Implications of the hypothesis We show that the concept of in vitro persistent infection is not only consistent with the hypothesis but in fact an implication of it. We show that increasing the RB radius, and/or the maximum length of T3S needles mediating contact between RBs and the inclusion membrane, and/or the number of inclusions per infected cell, will contribute to the development of persistent infection. The RB radius is the most important determinant of whether persistent infection would ensue, and subsequently, the magnitude of the EB yield. We determine relationships between the length of the T3S needle and the RB radius within an inclusion, and between the RB radius and the number of inclusions per host cell to predict whether persistent infection or normal development would occur within a host cell. These results are all testable experimentally and could lead to significantly greater understanding of one of the most crucial steps in chlamydial development.