Online citations, reference lists, and bibliographies.
← Back to Search

Paclitaxel Resistance In Non–Small-Cell Lung Cancer Associated With Beta-Tubulin Gene Mutations

Mariano Monzó, Rafael Rosell, José Javier Sánchez, Jin S. Lee, Aurora O'Brate, José Luis González-Larriba, Vicente Alberola, Juan Carlos Lorenzo, Laura Núñez, Jae Y. Ro, Cristina Martín

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
PURPOSE: The mechanisms that cause chemoresistance in non–small-cell lung cancer (NSCLC) patients have yet to be clearly elucidated. Paclitaxel is a tubulin-disrupting agent that binds preferentially to beta-tubulin. Tubulins are guanosine triphosphate (GTP)–binding proteins. Beta-tubulin is a GTPase, whereas alpha-tubulin has no enzyme activity. We reasoned that polymerase chain reaction (PCR) and DNA sequencing of the beta-tubulin gene could reveal more information regarding the connection between beta-tubulin mutations and primary paclitaxel resistance. PATIENTS AND METHODS: Constitutional genomic DNA and paired tumor DNA were isolated from 49 biopsies from 43 Spanish and six American stage IIIB and IV NSCLC patients who had been treated with a 3-hour, 210 mg/m2 paclitaxel infusion and a 24-hour, 200 mg/m2 infusion, respectively. Oligonucleotides specific to beta-tubulin were designed for PCR amplification and sequencing of GTP- and paclitaxel-binding beta-tubulin domains. RESULTS: Of 49 patients with NSCLC, 16 (33%; 95% confidence interval [CI], 20.7% to 45.3%) had beta-tubulin mutations in exons 1 (one patient) or 4 (15 patients). None of the patients with beta-tubulin mutations had an objective response, whereas 13 of 33 (39.4%; 95% CI, 22.8% to 56%; P = 0.01) patients without beta-tubulin mutations had complete or partial responses. Median survival was 3 months for the 16 patients with beta-tubulin mutations and 10 months for the 33 patients without beta-tubulin mutations (P = .0001). CONCLUSION: We have identified beta-tubulin gene mutations as a strong predictor of response to the antitubulin drug paclitaxel; these mutations may represent a novel mechanism of resistance and should be examined prospectively in future trials of taxane-based therapy in NSCLC.