Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Bioethanol Production From Macroalgae And Microbes

C. Ra, Sung-Koo Kim
Published 2015 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1002/3527600035.BPOL6008
Alginates from Algae
K. Draget (2002)
10.1007/s00449-011-0611-2
Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica
Ji-Suk Jang (2011)
10.1016/J.TIBTECH.2004.02.009
Milking of microalgae.
M. Hejazi (2004)
10.1007/s00449-011-0609-9
Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii)
Maria Dyah Nur Meinita (2011)
10.1111/J.1567-1364.2001.TB00012.X
The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae.
S. Ostergaard (2001)
10.1007/BF01583715
Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria
Ramaraj Boopathy (2005)
10.1016/j.tibtech.2012.01.005
Simultaneous co-fermentation of mixed sugars: a promising strategy for producing cellulosic ethanol.
S. R. Kim (2012)
10.1128/AEM.63.5.2092-2094.1997
Anaerobic Transformation of Furfural by Methanococcus deltae (Delta)LH.
N. Belay (1997)
10.1128/AEM.02268-08
Novel Evolutionary Engineering Approach for Accelerated Utilization of Glucose, Xylose, and Arabinose Mixtures by Engineered Saccharomyces cerevisiae Strains
Hendrik Wouter Wisselink (2008)
10.1016/S0961-9534(02)00073-9
Biomass yield and quality of 20 switchgrass populations in southern Iowa, USA.
R. Lemus (2002)
10.1016/S0960-8524(01)00212-7
Hydrolysis of lignocellulosic materials for ethanol production: a review.
Y. Sun (2002)
10.1007/s00253-004-1647-x
Valuable products from biotechnology of microalgae
O. Pulz (2004)
10.1016/j.tibtech.2012.10.009
Marine macroalgae: an untapped resource for producing fuels and chemicals.
Na Wei (2013)
10.1007/s11027-010-9275-5
Mass-cultivation of carbohydrate rich macroalgae, a possible solution for sustainable biofuel production
S. Kraan (2010)
10.1016/j.biortech.2011.12.065
Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation.
J. Park (2012)
10.1007/s10811-010-9529-3
A decade of change in the seaweed hydrocolloids industry
H. Bixler (2010)
10.1021/BM061185Q
Structure and functional properties of ulvan, a polysaccharide from green seaweeds.
M. Lahaye (2007)
10.1007/BF03175055
A constitutive catabolite repression mutant of a recombinantSaccharomyces cerevisiae strain improves xylose consumption during fermentation
V. Thanvanthri Gururajan (2009)
10.1002/(SICI)1097-0290(19990220)62:4<447::AID-BIT7>3.0.CO;2-0
Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture.
E. Palmqvist (1999)
10.1126/science.1214547
An Engineered Microbial Platform for Direct Biofuel Production from Brown Macroalgae
A. J. Wargacki (2012)
10.1007/s00253-003-1408-2
Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae
C. Roca (2004)
10.1128/AEM.02651-10
Functional Survey for Heterologous Sugar Transport Proteins, Using Saccharomyces cerevisiae as a Host
Eric M. Young (2011)
10.1016/S0168-1656(98)00205-3
Investigation of the impact of MIG1 and MIG2 on the physiology of Saccharomyces cerevisiae.
C. J. Klein (1999)
10.1016/j.biortech.2013.04.122
Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.
C. Ra (2013)
10.1016/j.biortech.2012.10.025
Potentials of macroalgae as feedstocks for biorefinery.
K. A. Jung (2013)
10.1007/BF00413388
β-Glucosidase excretion by Trichoderma pseudokoningii: Correlation with cell wall bound β-1.3-glucanase activities
C. Kubicek (2004)
10.1016/J.BIOMBIOE.2007.02.002
Fractional yield and moisture of corn stover biomass produced in the Northern US Corn Belt
K. Shinners (2007)
10.1002/yea.746
Co‐consumption of sugars or ethanol and glucose in a Saccharomyces cerevisiae strain deleted in the HXK2 gene
Léonie M. Raamsdonk (2001)
10.1021/IE801542G
Methods for Pretreatment of Lignocellulosic Biomass for Efficient Hydrolysis and Biofuel Production
P. Kumar (2009)
10.1016/j.biortech.2010.06.032
Renewable fuels from algae: an answer to debatable land based fuels.
A. Singh (2011)
10.1016/J.TIBTECH.2006.10.004
Bio-ethanol--the fuel of tomorrow from the residues of today.
B. Hahn-Hägerdal (2006)
10.1007/s10811-008-9384-7
Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments
J. Adams (2008)
10.7841/KSBBJ.2013.28.5.282
해조류 우뭇가사리 (Gelidium amansii)의 분리당화발효를 이용한 바이오에탄올의 생산
라채훈 (2013)
10.1007/s10295-004-0148-3
Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran
Z. Liu (2004)
10.1016/J.ENZMICTEC.2008.03.001
Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1
Satoshi Katahira (2008)
10.1007/S00343-011-0298-X
Optimization of dilute acid hydrolysis of Enteromorpha
Feng Da-wei (2011)
10.1186/1754-6834-3-5
Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae
D. Runquist (2010)
10.1016/J.ENZMICTEC.2007.04.006
Enzymatic saccharification and fermentation of alkaline peroxide pretreated rice hulls to ethanol
B. Saha (2007)
10.1038/82400
Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network
S. Ostergaard (2000)
10.1016/j.biortech.2013.03.108
Bioethanol production from the macroalgae Sargassum spp.
M. G. Borines (2013)
10.1007/s00253-008-1583-2
Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption
R. Hector (2008)
10.1128/MCB.14.6.3834
Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccharomyces cerevisiae.
M. Johnston (1994)
10.1007/s002530000328
Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae
M. Taherzadeh (2000)
10.1016/J.RENENE.2010.06.001
Study on saccharification techniques of seaweed wastes for the transformation of ethanol
Leilei Ge (2011)
10.1007/s12257-013-0051-8
Ethanol production from seaweed (Undaria pinnatifida) using yeast acclimated to specific sugars
Hyejin Kim (2013)
10.1007/s00449-013-0895-5
Bioethanol production from brown seaweed, Undaria pinnatifida, using NaCl acclimated yeast
Yukyeong Cho (2013)
10.4014/JMB.1307.07054
Ethanol production from the seaweed Gelidium amansii, using specific sugar acclimated yeasts.
Hyeyoung Cho (2014)
10.1016/j.biortech.2012.09.122
Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation.
J. Y. Lee (2013)
10.1016/J.JIEC.2013.10.056
Comparison of red, brown and green seaweeds on enzymatic saccharification process
I. Hong (2014)
10.3390/md9122514
Seaweed Polysaccharides and Derived Oligosaccharides Stimulate Defense Responses and Protection Against Pathogens in Plants
J. Vera (2011)
10.1016/j.biortech.2007.11.036
Classification of macroalgae as fuel and its thermochemical behaviour.
A. B. Ross (2008)
10.1016/S0167-7799(00)01433-5
Commercial potential for Haematococcus microalgae as a natural source of astaxanthin.
R. Lorenz (2000)



Semantic Scholar Logo Some data provided by SemanticScholar