Online citations, reference lists, and bibliographies.
← Back to Search

Microcystic Inner Nuclear Layer Changes And Retinal Nerve Fiber Layer Defects In Eyes With Glaucoma

Tomoko Hasegawa, Tadamichi Akagi, Munemitsu Yoshikawa, K. Suda, H. Yamada, Y. Kimura, H. Nakanishi, M. Miyake, N. Unoki, H. Ikeda, N. Yoshimura
Published 2015 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Objective To examine microcystic inner nuclear layer (INL) changes in glaucomatous eyes and to determine associated factors. Design Retrospective, cross-sectional, observational study. Methods Two hundred seventeen eyes of 133 patients with primary open angle glaucoma (POAG), 41 eyes of 32 patients with preperimetric glaucoma and 181 normal eyes of 117 subjects were ultimately included. Microcystic INL lesions were examined with infrared fundus images and with 19 vertical spectral domain optical coherence tomography (SD-OCT) images in the macular area. Results Microcystic INL changes were observed in 6.0% of eyes with POAG, but none of the normal eyes or eyes with preperimetric glaucoma showed microcystic INL changes. The proportion of eyes with advanced glaucoma was significantly larger (P = 0.013) in eyes with microcystic lesions than without. The visual field mean deviation (MD) slope was also significantly worse (P = 0.027) in eyes with microcystic lesions. No significant differences were observed in age, sex, refraction, axial length, intraocular pressure, or MD value between eyes with and without microcystic INL lesions. In several cases, microcystic INL lesions occurred along with glaucomatous visual field progression. The retinal nerve fiber layer (RNFL) thickness (P = 0.013) and ganglion cell layer (GCL) + inner plexiform layer thickness (P = 0.023) were significantly lower in areas with microcystic lesions than without. The INL was also significantly thicker (P = 0.002) in areas with microcystic lesions. Conclusions Microcystic INL lesions in glaucomatous eyes are closely associated with RNFL and GCL thinning and correlated with worse MD slope. These INL lesions may indicate focal and progressive damage in glaucoma.
This paper references
The electroretinogram in advanced openangle glaucoma
DT Fazio (1986)
10.1016/j.ophtha.2011.06.015
Macular ganglion cell layer imaging in preperimetric glaucoma with speckle noise-reduced spectral domain optical coherence tomography.
N. Nakano (2011)
Clinical Decisions In Glaucoma
E. Hodapp (1993)
10.1136/jnnp-2014-308189
Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis
L. Balk (2014)
10.1136/jnnp.2008.166207
Distinctive retinal nerve fibre layer and vascular changes in neuromyelitis optica following optic neuritis
A. Green (2009)
10.1167/iovs.10-5551
Tracking longitudinal retinal changes in experimental ocular hypertension using the cSLO and spectral domain-OCT.
L. Guo (2010)
10.1016/J.JNEUROIM.2007.04.009
Neuromyelitis optica: Changing concepts
Anu Anna Jacob (2007)
10.1167/iovs.11-7962
Macular ganglion cell-inner plexiform layer: automated detection and thickness reproducibility with spectral domain-optical coherence tomography in glaucoma.
Jean-Claude Mwanza (2011)
10.1136/bjo.2010.183756
Evidence of outer retinal changes in glaucoma patients as revealed by ultrahigh-resolution in vivo retinal imaging
S. Choi (2010)
10.1093/brain/aws215
Microcystic macular degeneration from optic neuropathy.
M. Abegg (2012)
10.1212/WNL.0b013e31828c2f7a
In vivo identification of morphologic retinal abnormalities in neuromyelitis optica
E. Sotirchos (2013)
10.1016/j.ophtha.2012.03.044
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: patterns of retinal nerve fiber layer progression.
C. Leung (2012)
10.1093/brain/aws216
Microcystic macular oedema confirmed, but not specific for multiple sclerosis.
L. Balk (2012)
10.1016/j.ajo.2011.06.016
The diversity of traction mechanisms in myopic traction maculopathy.
Brian L. Vanderbeek (2012)
10.1001/ARCHOPHT.1987.01060090021004
Photocoagulation for diabetic macular edema.
L. Aiello (1987)
10.1097/00006982-200504000-00007
REMOVAL OF ADHERENT CORTICAL VITREOUS PLAQUES WITHOUT REMOVING THE INTERNAL LIMITING MEMBRANE IN THE REPAIR OF MACULAR DETACHMENTS IN HIGHLY MYOPIC EYES
R. Spaide (2005)
TRANS-SYNAPTIC RETROGRADE DEGENERATION IN THE VISUAL SYSTEM OF PRIMATES.
J. Vanburen (1963)
10.1093/brain/awt014
Microcystic macular degeneration from optic neuropathy: not inflammatory, not trans-synaptic degeneration.
P. Barboni (2013)
10.1155/2011/264803
Measurement of Photoreceptor Layer in Glaucoma: A Spectral-Domain Optical Coherence Tomography Study
N. Fan (2011)
10.1007/S11910-008-0066-2
Neuromyelitis optica: Diagnosis, pathogenesis, and treatment
B. Cree (2008)
10.1097/IAE.0b013e31828e68d0
RETINAL INNER NUCLEAR LAYER MICROCYSTIC CHANGES IN OPTIC NERVE ATROPHY: A Novel Spectral-Domain OCT Finding
B. Wolff (2013)
10.1023/A:1002192829817
Mechanisms of fluid accumulation in retinal edema
M. Marmor (2004)
10.1093/brain/aws098
Microcystic macular oedema in multiple sclerosis is associated with disease severity.
J. Gelfand (2012)
10.1167/iovs.07-0980
Changes in cellular structures revealed by ultra-high resolution retinal imaging in optic neuropathies.
S. Choi (2008)
10.1167/iovs.09-5067
Spatial pattern of glaucomatous visual field loss obtained with regionally condensed stimulus arrangements.
U. Schiefer (2010)
10.1093/brain/awq080
Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration.
A. Green (2010)
10.1007/s00417-012-2253-8
Delayed onset inner nuclear layer cystic changes following internal limiting membrane removal for epimacular membrane
E. Sigler (2012)
10.1212/01.wnl.0000460819.78400.df
Dynamic formation of macular microcysts independent of vitreous traction changes
F. Ziemssen (2015)
10.1016/0002-9394(89)90488-1
Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma.
H. Quigley (1989)
10.1016/j.ajo.2006.02.012
Perifoveal vitreous detachment and its macular complications.
M. Johnson (2005)
10.1001/ARCHOPHT.118.2.235
Swelling and loss of photoreceptors in chronic human and experimental glaucomas.
T. Nork (2000)
10.1371/journal.pone.0034823
The OSCAR-IB Consensus Criteria for Retinal OCT Quality Assessment
P. Tewarie (2012)
10.1016/j.ajo.2013.04.028
Macular imaging in highly myopic eyes with and without glaucoma.
N. Nakano (2013)
10.1038/eye.2010.218
Outer retinal abnormalities associated with inner retinal pathology in nonglaucomatous and glaucomatous optic neuropathies
J. Werner (2011)
Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1. Early Treatment Diabetic Retinopathy Study research group.
(1985)
10.1016/j.ajo.2011.05.028
Identifying a clinically meaningful threshold for change in uveitic macular edema evaluated by optical coherence tomography.
E. Sugar (2011)
10.1371/journal.pone.0071145
Optic Neuritis Is Associated with Inner Nuclear Layer Thickening and Microcystic Macular Edema Independently of Multiple Sclerosis
F. Kaufhold (2013)
10.1136/jnnp.26.5.402
Trans-synaptic retrograde degeneration in the visual system of primates
J. M. Buren (1963)
10.1016/j.ajo.2014.08.040
Asymmetry analysis of macular inner retinal layers for glaucoma diagnosis.
H. Yamada (2014)
10.1016/j.ophtha.2013.08.045
Microcystic macular edema: retrograde maculopathy caused by optic neuropathy.
M. Abegg (2014)
Retinal nerve fiber layer imaging with spectraldomain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma
CK Leung (2010)
Early Treatment Diabetic Retinopathy Study research group. Photocoagulation for diabetic macular edema. Early Treatment Diabetic Retinopathy Study report number 1
(1985)
10.1016/j.ajo.2013.06.029
Macular structure parameters as an automated indicator of paracentral scotoma in early glaucoma.
Y. Kimura (2013)
10.1093/brain/awt155
Reply: Microcysts in the inner nuclear layer from optic atrophy are caused by retrograde trans-synaptic degeneration combined with vitreous traction on the retinal surface.
A. Green (2013)
Detection of Macular Ganglion Cell Loss in Glaucoma by Fourier-Domain Optical Coherence Tomography
J. D. Cascajosa (2010)
10.1001/jamaophthalmol.2013.4578
Evolution of vitreomacular detachment in healthy subjects.
Hirotaka Itakura (2013)
10.1167/iovs.12-10210
A novel method to detect local ganglion cell loss in early glaucoma using spectral-domain optical coherence tomography.
K. Takayama (2012)
10.1016/j.ophtha.2010.01.026
Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection.
C. Leung (2010)
10.1007/BF00153011
The electroretinogram in advanced open-angle glaucoma
D. T. Fazio (2004)
Microcystic Inner Nuclear Layer Changes in Glaucoma PLOS ONE | DOI:10.1371/journal.pone
10.1093/brain/awt154
Microcysts in the inner nuclear layer from optic atrophy are caused by retrograde trans-synaptic degeneration combined with vitreous traction on the retinal surface.
B. Lujan (2013)
10.1001/jamaneurol.2013.1832
Microcystic inner nuclear layer abnormalities and neuromyelitis optica.
J. Gelfand (2013)
10.1167/iovs.11-7716
Hypodense regions (holes) in the retinal nerve fiber layer in frequency-domain OCT scans of glaucoma patients and suspects.
D. Xin (2011)
10.1016/S1474-4422(12)70213-2
Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study
S. Saidha (2012)
10.1371/journal.pone.0078341
Inner Nuclear Layer Thickening Is Inversley Proportional to Retinal Ganglion Cell Loss in Optic Neuritis
Megha Kaushik (2013)
10.1167/iovs.10-5572
Three-dimensional imaging of macular inner structures in glaucoma by using spectral-domain optical coherence tomography.
Yuriko Kotera (2011)



This paper is referenced by
10.1167/iovs.18-25837
Pulling and Tugging on the Retina: Mechanical Impact of Glaucoma Beyond the Optic Nerve Head.
B. Fortune (2019)
10.1097/ICB.0000000000000564
CIRCINATE PARTITION-LIKE FINDINGS ON CONE MOSAIC IMAGED BY ADAPTIVE OPTICS SCANNING LASER OPHTHALMOSCOPY IN EYES WITH INNER NUCLEAR LAYER MICROCYSTIC CHANGES.
Tomoko Hasegawa (2019)
10.1159/000505785
Life Cycle and Lensing of a Macular Microcyst
Alexander Meadway (2020)
10.1136/bjophthalmol-2018-312753
Outer retinal layer thickness in patients with glaucoma with horizontal hemifield visual field defects
J. Vianna (2018)
10.1038/eye.2016.190
Clinical evaluation of microcystic macular edema in patients with glaucoma
N. Murata (2016)
10.1016/J.JFO.2016.04.008
Microkystes dans la couche nucléaire interne de la rétine en OCT spectral domaine dans le cadre d’une neuropathie optique alcoolique
Ariel Sion (2017)
10.1007/s00417-017-3717-7
Paravascular inner retinal abnormalities in healthy eyes
Rie Osaka (2017)
10.1097/IJG.0000000000001039
Inner Retinal Changes in Primary Open-Angle Glaucoma Revealed Through Adaptive Optics-Optical Coherence Tomography
E. M. Wells-Gray (2018)
10.1016/j.jaapos.2016.05.013
The macula in pediatric glaucoma: quantifying the inner and outer layers via optical coherence tomography automatic segmentation.
E. Silverstein (2016)
10.1097/IJG.0000000000000633
Retrograde Maculopathy in Patients With Glaucoma
Jacqueline Brazerol (2017)
10.1111/ceo.13327
Microcystic macular oedema in optic neuropathy: case series and literature review
L. Kessel (2018)
10.1016/j.preteyeres.2020.100875
Discovery and clinical translation of novel glaucoma biomarkers
Gala Beykin (2020)
10.1186/s12974-016-0746-9
Complement-independent retinal pathology produced by intravitreal injection of neuromyelitis optica immunoglobulin G
Christian M. Felix (2016)
10.1007/978-3-030-26269-3_11
OCT and Multiple Sclerosis
James V. M. Hanson (2020)
10.1167/iovs.18-25837
Pulling and Tugging on the Retina: Mechanical Impact of Glaucoma Beyond the Optic Nerve Head.
B. Fortune (2019)
10.1016/j.ajo.2015.10.013
Retinal Changes in Pediatric Glaucoma and Nonglaucomatous Optic Atrophy.
K. Jiramongkolchai (2016)
10.1038/s41598-017-05282-4
Relationship between Retinal Inner Nuclear Layer Thickness and Severity of Visual Field Loss in Glaucoma
E. Kim (2017)
10.1016/j.survophthal.2020.02.004
Cystoid macula edema related to cataract surgery and topical prostaglandin analogs: mechanism, diagnosis, and management.
G. Holló (2020)
10.1167/iovs.18-24160
Peripapillary Retinoschisis in Glaucoma: Association With Progression and OCT Signs of Müller Cell Involvement
B. Fortune (2018)
10.1097/IAE.0000000000001492
INCREASED INTRAOCULAR PRESSURE IS A RISK FACTOR FOR UNEXPLAINED VISUAL LOSS DURING SILICONE OIL ENDOTAMPONADE
M. Marti (2017)
10.1007/s10143-016-0772-1
Optical coherence tomography impacts the evaluation of visual pathway tumors
Ana Banc (2016)
10.2147/OPTH.S256755
Individual Macular Layer Evaluation with Spectral Domain Optical Coherence Tomography in Normal and Glaucomatous Eyes
Fernanda Mari Fagundes Fujihara (2020)
10.1167/iovs.18-25837
Pulling and Tugging on the Retina: Mechanical Impact of Glaucoma Beyond the Optic Nerve Head.
B. Fortune (2019)
10.31080/asop.2020.03.0139
Evaluation of Retinal Nerve Fiber Layer and Ganglion Cell-Inner Plexiform Layer Loss in Patients with Primary Open Angle Glaucoma
Mohamed M Almbsut (2020)
10.1371/journal.pone.0182816
Peripapillary retinal splitting visualized on OCT in glaucoma and glaucoma suspect patients
D. Grewal (2017)
10.1055/s-0036-1582226
Optical Coherence Tomography in Multiple Sclerosis.
James V M Hanson (2016)
10.1016/j.ajo.2016.08.021
Cone Integrity in Glaucoma: An Adaptive-Optics Scanning Laser Ophthalmoscopy Study.
Tomoko Hasegawa (2016)
10.1167/iovs.18-25837
Pulling and Tugging on the Retina: Mechanical Impact of Glaucoma Beyond the Optic Nerve Head.
B. Fortune (2019)
10.1016/j.survophthal.2020.03.002
Macular Imaging with Optical Coherence Tomography in Glaucoma.
V. Mohammadzadeh (2020)
10.1038/s41433-018-0296-8
A proposed mechanism influencing structural patterns in X-linked retinoschisis and stellate nonhereditary idiopathic foveomacular retinoschisis
S. Fragiotta (2018)
10.1167/iovs.18-25837
Pulling and Tugging on the Retina: Mechanical Impact of Glaucoma Beyond the Optic Nerve Head.
B. Fortune (2019)
10.1016/j.ophtha.2019.09.013
Differential Effects of Aging in the Macular Retinal Layers, Neuroretinal Rim, and Peripapillary Retinal Nerve Fiber Layer.
B. Chauhan (2019)
See more
Semantic Scholar Logo Some data provided by SemanticScholar