Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Nanomedicines Targeting Cancer: Current Status And Future Prospects Of The Therapeutic And Diagnostic Approaches

Foram Shukla, Shivang Parikh
Published 2011 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This paper references
Neovascular targeting therapy: paclitaxel encapsulated in cationic liposomes improves antitumoral efficacy.
M. Schmitt‐Sody (2003)
10.1021/JA0343095
Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy.
I. Roy (2003)
10.1016/S1359-6446(04)03291-X
Quantum dots and other nanoparticles: what can they offer to drug discovery?
M. Ozkan (2004)
10.1309/5CWPU41AFR1VYM3F
Targeted therapies for cancer 2004.
J. Ross (2004)
10.4161/cc.4.5.1684
Targeting Cancer Cells with DNA-Assembled Dendrimers: A Mix-and-Match Strategy for Cancer
Youngseon Choi (2005)
10.1021/AC990630N
Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors.
H. Clark (1999)
10.1126/SCIENCE.1104274
Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics
X. Michalet (2005)
10.1016/S0065-2571(00)00013-3
The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.
H. Maeda (2001)
10.1111/j.1440-1681.2006.04408.x
POLYMERIC CORE‐SHELL NANOPARTICLES FOR THERAPEUTICS
Y. Yang (2006)
10.3152/030234212X13214603531969
The future of nanomedicine: Promises and limitations
R. Juliano (2012)
10.1096/fj.04-2747rev
Nanomedicine: current status and future prospects
S. Moghimi (2005)
10.1016/S1359-6446(03)02903-9
Nanotech approaches to drug delivery and imaging.
S. Sahoo (2003)
10.1016/S0169-409X(98)00108-2
Delivery of gamma-imaging agents by liposomes.
Phillips (1999)
10.1007/s00249-006-0042-1
Targeting cancer cells: magnetic nanoparticles as drug carriers
C. Alexiou (2006)
10.1097/00000421-200202000-00012
Phase IV Study of Liposomal Daunorubicin (DaunoXome) in AIDS-Related Kaposi Sarcoma
E. Rosenthal (2002)
10.1038/35025220
Angiogenesis in cancer and other diseases
P. Carmeliet (2000)
10.3748/WJG.V11.I7.954
High-density lipoprotein as a potential carrier for delivery of a lipophilic antitumoral drug into hepatoma cells.
B. Lou (2005)
10.1158/1078-0432.CCR-07-1441
Therapeutic Nanoparticles for Drug Delivery in Cancer
Kwangjae Cho (2008)
10.1016/0168-3659(95)00169-7
Control of molecular polymorphisms by a structured carbohydrate / ceramic delivery vehicle — aquasomes
N. Kossovsky (1996)
10.3816/CBC.2003.S.019
Current status of liposomal anthracycline therapy in metastatic breast cancer.
E. Rivera (2003)
10.1158/0008-5472.CAN-04-3921
Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer.
J. Kukowska-Latallo (2005)
10.1007/s00259-006-0139-x
Enhanced accumulation of long-circulating liposomes modified with the nucleosome-specific monoclonal antibody 2C5 in various tumours in mice: gamma-imaging studies
T. Elbayoumi (2006)
10.1517/14712598.5.1.111
Nanobodies as novel agents for cancer therapy
H. Revets (2005)
Anticancer drug delivery with nanoparticles.
M. Conti (2006)
10.1039/B410943K
Biomedical applications of functionalised carbon nanotubes.
A. Bianco (2005)
10.1002/JPS.2600681215
Adsorption of antineoplastic drugs to polyalkylcyanoacrylate nanoparticles and their release in calf serum.
P. Couvreur (1979)
10.1158/1078-0432.CCR-06-0839
A Tracer Dose of Technetium-99m–Labeled Liposomes Can Estimate the Effect of Hyperthermia on Intratumoral Doxil Extravasation
M. Kleiter (2006)
10.1016/S0163-7258(99)00073-X
Resistance mechanisms associated with altered intracellular distribution of anticancer agents.
A. Larsen (2000)
10.1177/019262339602400114
Structure and Function of Sinusoidal Lining Cells in the Liver
E. Wisse (1996)
10.1016/J.BIOPHA.2004.01.007
Nanomedicines for overcoming biological barriers.
M. Alonso (2004)
10.1038/nrc903
Ligand-targeted therapeutics in anticancer therapy
T. Allen (2002)
10.1002/ijc.22581
Imaging of Vx‐2 rabbit tumors with ανβ3‐integrin‐targeted 111In nanoparticles
G. Hu (2007)
10.1016/J.DRUP.2005.08.004
Resistance to epidermal growth factor receptor-targeted therapy.
F. Morgillo (2005)
10.1016/S0142-9612(03)00133-9
Staphylococcus epidermidis-fibronectin binding and its inhibition by heparin.
C. R. Arciola (2003)
10.1093/ANNONC/MDL104
Abraxane, a novel Cremophor-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer.
M. Green (2006)
10.1007/s00259-008-0860-8
Dual-modality optical and positron emission tomography imaging of vascular endothelial growth factor receptor on tumor vasculature using quantum dots
K. Chen (2008)
10.1200/JCO.2005.04.937
Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer.
W. Gradishar (2005)
10.1016/j.addr.2008.04.013
Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer.
M. Hamoudeh (2008)
10.1158/1078-0432.CCR-04-0334
Antitumor Activity of Hydrophilic Paclitaxel Copolymer Prodrug Using Locoregional Delivery in Human Orthotopic Non–Small Cell Lung Cancer Xenograft Models
Y. Zou (2004)
10.1007/s000180300002
Colloidal drug carriers: achievements and perspectives
G. Barratt (2003)
10.2967/jnumed.106.039131
Tumor Targeting with Antibody-Functionalized, Radiolabeled Carbon Nanotubes
M. McDevitt (2007)
10.1038/nnano.2007.387
Nanocarriers as an emerging platform for cancer therapy.
D. Peer (2007)
10.1080/10717540490433895
Colloidal Gold: A Novel Nanoparticle Vector for Tumor Directed Drug Delivery
G. Paciotti (2004)
10.2967/jnumed.108.051243
PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)–Conjugated Radiolabeled Iron Oxide Nanoparticles
Ha-young Lee (2008)
10.1016/S0958-1669(02)00282-3
Luminescent quantum dots for multiplexed biological detection and imaging.
W. Chan (2002)
10.1016/S0169-409X(02)00045-5
Poly(L-glutamic acid)--anticancer drug conjugates.
Chun Xing Li (2002)
10.1021/MP060055T
Enhanced tumor visualization by gamma-scintigraphy with 111In-labeled polychelating-polymer-containing immunoliposomes.
Suna Erdoğan (2006)
10.1007/s11060-005-9059-z
The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma
A. Jordan (2005)
10.1200/JCO.1999.17.2.478
Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer.
A. Tolcher (1999)
10.2147/IJN.S1253
Tumor targeting using liposomal antineoplastic drugs
J. Huwyler (2008)
Long-circulating and target-specific nanoparticles: theory to practice.
S. Moghimi (2001)
10.1038/nbt1159
Cell-specific targeting of nanoparticles by multivalent attachment of small molecules
R. Weissleder (2005)
10.1016/J.ADDR.2004.02.014
Nanoparticle and targeted systems for cancer therapy.
L. Brannon-Peppas (2004)
10.1517/14656566.7.11.1469
Pegylated liposomal doxorubicin in the treatment of cancers of the breast and ovary
M. Markman (2006)
10.1096/fj.02-0088com
Rapid endo‐lysosomal escape of poly(DL‐lactide‐coglycolide) nanoparticles: implications for drug and gene delivery
J. Panyam (2002)
Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size.
F. Yuan (1995)
Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy.
G. Ting (2009)
Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes.
K. Harrington (2001)
10.1158/1078-0432.CCR-03-0655
Phase I and Pharmacokinetic Study of Genexol-PM, a Cremophor-Free, Polymeric Micelle-Formulated Paclitaxel, in Patients with Advanced Malignancies
T. Kim (2004)
10.2174/138161206779026317
Nanocarriers for nuclear imaging and radiotherapy of cancer.
A. Mitra (2006)
10.1016/J.CBPA.2005.10.005
Applications of carbon nanotubes in drug delivery.
A. Bianco (2005)
10.1021/NL050687R
Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles.
R. A. Farrer (2005)



Semantic Scholar Logo Some data provided by SemanticScholar