Online citations, reference lists, and bibliographies.
← Back to Search

Оптимальна температура життєвої активності людини

A. A. Guslisty, N. P. Malomuzh, A. I. Fisenko
Published 2018 · Physics

Save to my Library
Download PDF
Analyze on Scholarcy
Share
The optimal temperature for the human life activity has been determined, by assuming that this parameter corresponds to the most intensive oxygen transport in arteries and the most intensive chemical reactions in the cells. The oxygen transport is found to be mainly governed by the blood saturation with oxygen and the blood plasma viscosity, with the both parameters depending on the temperature and the acid-base balance in blood. Additional parameters affecting the erythrocyte volume and, accordingly, the temperature of the most intensive oxygen transport are also taken into account. Erythrocytes are assumed to affect the shear viscosity of blood in the same way, as impurity particles change the suspension viscosity. It is shown that theoptimal temperature equals 36.6 ∘C under normal environmental conditions. The dependence of the optimal temperature for the human life activity on the acid-base index is discussed.
This paper references
Acid-base balance in alcohol users seen in an emergency room.
A. Lamminpaa (1991)
10.1183/20734735.001415
Relating oxygen partial pressure, saturation and content: the haemoglobin–oxygen dissociation curve
Julie-Ann Collins (2015)
10.7717/peerj.346
Vertebrate blood cell volume increases with temperature: implications for aerobic activity
J. Gillooly (2014)
10.1016/J.MOLLIQ.2005.11.027
Upper temperature limit for the existence of living matter
L. Bulavin (2006)
10.1002/andp.19063240204
Eine neue Bestimmung der Moleküldimensionen
A. Einstein (1906)
10.1113/jphysiol.2010.197392
Hydrogen ion dynamics in human red blood cells
P. Swietach (2010)
10.1111/J.0954-6820.1986.TB03348.X
Erythrocyte mean cell volume--correlation to drinking pattern in heavy alcoholics.
H. Tønnesen (1986)
10.1152/JAPPL.1994.76.4.1462
Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
W. Stringer (1994)
10.1002/BIP.1979.360180811
Effect of some monohydric alcohols on the oxygen affinity of hemoglobin: Relevance of solvent dielectric constant and hydrophobicity
L. Cordone (1979)
10.1016/J.CPLETT.2008.01.028
Surprising properties of the kinematic shear viscosity of water
L. Bulavin (2008)
10.1023/A:1021502306529
A New Version of the Cell Method of Determining the Suspension Viscosity
N. P. Malomuzh (2002)
10.1093/SLEEP/10.3.224
The effect of excessive ethanol ingestion on sleep in severe chronic obstructive pulmonary disease.
P. Easton (1987)
10.1007/s004210050126
Lactate/H+ uptake by red blood cells during exercise alters their physical properties
J. Smith (1996)
10.1172/JCI105420
Metabolic dependence of the critical hemolytic volume of human erythrocytes: relationship to osmotic fragility and autohemolysis in hereditary spherocytosis and normal red cells.
R. Weed (1966)
10.1136/jnnp.45.4.353
Alcohol, snoring and sleep apnea.
F. Issa (1982)
10.1016/J.MOLLIQ.2007.05.003
Role of the collective self-diffusion in water and other liquids
L. Bulavin (2008)
10.1265/ehpm.10.16
Effect of moderate alcohol intake on nocturnal sleep respiratory parameters in healthy middle-aged men
I. Izumi (2005)
10.1016/0005-2736(85)90343-8
Temperature effects on osmotic fragility, and the erythrocyte membrane.
G. V. Richieri (1985)
10.1103/PHYSREVE.48.1977
Viscosities of concentrated dispersions.
Chow (1993)
10.1053/JCRC.2002.33027
Acidosis induced by lactate, pyruvate, or HCl increases blood viscosity.
W. Reinhart (2002)
10.1016/J.CHEMPHYS.2007.08.013
The role of the H-bond network in the creation of the life-giving properties of water
A. I. Fisenko (2008)
10.3390/ijms10052383
To What Extent Is Water Responsible for the Maintenance of the Life for Warm-Blooded Organisms?
A. I. Fisenko (2009)
10.1016/0049-3848(83)90267-0
Increase in blood viscosity due to alcohol drinking.
T. Hamazaki (1983)
Low Reynolds number hydrodynamics: with special applications to particulate media
J. Happel (1973)
10.1007/s004240000061
Effect of pH on red blood cell deformability
D. Kuzman (2016)
10.1152/JAPPL.1968.25.5.550
pH and blood viscosity.
P. Rand (1968)
10.3109/00365516609065612
pH and molecular CO2 components of the Bohr effect in human blood.
N. Naeraa (1966)
10.1063/1.1722635
Viscosity of Suspensions of Uniform Spheres
J. Happel (1957)
10.1081/CLT-53083
Does Ethanol Explain the Acidosis Commonly Seen in Ethanol-Intoxicated Patients?
S. Zehtabchi (2005)
10.1155/2012/989487
Brain Temperature: Physiology and Pathophysiology after Brain Injury
S. Mrozek (2012)
10.1016/J.ANNFAR.2004.01.017
Les variations thermiques modifient les paramètres des gaz du sang : quelles conséquences en pratique clinique ?
B. Tremey (2004)
10.1002/ANDP.19113390313
Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen”︁
A. Einstein (1911)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar