Online citations, reference lists, and bibliographies.
← Back to Search

Synthesis And Oxidation Stability Of Monosized And Monocrystalline Pr Nanoparticles

Shubhra Kala, Bodh Raj Mehta, Frank Einar Kruis, Vidya Nand Singh

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This study reports the synthesis of monosized Pr nanoparticles with a controllable size ranging from 5 to 20 nm. Pr agglomerates generated by a spark generator first size-selected by a differential mobility analyzer and subsequently sintered in-flight at different temperatures result in spherical and monocrystalline Pr nanoparticles. The dependence of size and size distribution of Pr nanoparticles has been studied as a function of deposition parameters related to spark generator, differential mobility analyzer, and sintering. Transmission electron microscopy, energy-dispersive x-ray analysis, glancing angle x-ray diffraction, and x-ray photoelectron spectroscopy studies confirm that initial Pr agglomerates and the resulting nanoparticles are metallic with d-hexagonal structure and remain stable in air during post-deposition exposure. Incomplete or partially sintered nanoparticles were found to be oxidized, resulting in the formation of amorphous oxide phase due to enhanced oxidation at grain boundaries.