Online citations, reference lists, and bibliographies.

Merging Materials And Data Science: Opportunities, Challenges, And Education In Materials Informatics

Thomas J. Oweida, Akhlak Mahmood, Matthew D. Manning, Sergei Rigin, Yaroslava G. Yingling
Published 2020 · Engineering

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1016/J.JMAT.2017.08.002
Materials discovery and design using machine learning
Y. Liu (2017)
10.1021/acs.jcim.7b00663
Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations.
Patrick Bleiziffer (2018)
10.1063/1.4966192
Perspective: Machine learning potentials for atomistic simulations.
J. Behler (2016)
10.1103/PhysRevMaterials.1.043603
Accurate force field for molybdenum by machine learning large materials data
Chi Chen (2017)
10.1002/ADTS.201800129
Soft Matter Informatics: Current Progress and Challenges
James S. Peerless (2019)
10.1557/MRS.2016.93
Materials science with large-scale data and informatics: Unlocking new opportunities
J. Hill (2016)
10.1177/1045389X18781024
Analysis of a multi-axial quantum-informed ferroelectric continuum model: Part 2—sensitivity analysis
Lider S. Leon (2018)
10.1038/s41467-018-06169-2
Towards exact molecular dynamics simulations with machine-learned force fields
Stefan Chmiela (2018)
10.1111/JACE.16677
Data‐driven glass/ceramic science research: Insights from the glass and ceramic and data science/informatics communities
Eileen De Guire (2019)
10.1021/ACS.JPCC.6B05068
Machine Learning Assisted Predictions of Intrinsic Dielectric Breakdown Strength of ABX3 Perovskites
Chiho Kim (2016)
10.1016/J.SURFCOAT.2005.08.097
Materials informatics for the design of novel coatings
L. Zhao (2005)
10.1016/J.COMMATSCI.2015.11.013
Material synthesis and design from first principle calculations and machine learning
K. Takahashi (2016)
10.1007/978-3-319-99465-9_4
Bayesian Approaches to Uncertainty Quantification and Structure Refinement from X-Ray Diffraction
Alisa R. Paterson (2018)
10.3390/POLYM10010103
Designing High-Refractive Index Polymers Using Materials Informatics †
Vishwesh Venkatraman (2018)
10.1021/ci00062a008
SMILES. 2. Algorithm for generation of unique SMILES notation
D. Weininger (1989)
10.1038/s41524-017-0042-y
A universal strategy for the creation of machine learning-based atomistic force fields
T. D. Huan (2017)
10.1103/PhysRevB.92.094306
Learning scheme to predict atomic forces and accelerate materials simulations
V. Botu (2015)
10.1002/WCMS.1439
Making machine learning a useful tool in the accelerated discovery of transition metal complexes
Heather J. Kulik (2020)
10.1109/EIDWT.2011.13
PoLyInfo: Polymer Database for Polymeric Materials Design
S. Otsuka (2011)
10.1017/S1431927617001283
A Convolutional Neural Network Approach to Thickness Determination using Position Averaged Convergent Beam Electron Diffraction
Weizong Xu (2017)
10.1177/1045389X18781023
Analysis of a multi-axial quantum informed ferroelectric continuum model: Part 1—uncertainty quantification
Paul R. Miles (2018)
10.1038/nmat3568
The high-throughput highway to computational materials design.
S. Curtarolo (2013)
10.1021/ACS.JPCC.9B01045
Machine Learning-Aided Design of Materials with Target Elastic Properties
S. Zeng (2019)
10.1093/nar/28.1.235
The Protein Data Bank
H. Berman (2000)
10.1021/acs.bioconjchem.6b00534
Advances in Molecular Modeling of Nanoparticle-Nucleic Acid Interfaces.
J. A. Nash (2017)
10.1038/s41597-019-0224-1
Text-mined dataset of inorganic materials synthesis recipes
O. Kononova (2019)
10.1016/J.JALLCOM.2003.08.058
The Pauling File, Binaries Edition
P. Villars (2004)
10.1021/acscentsci.9b00476
BigSMILES: A Structurally-Based Line Notation for Describing Macromolecules
Tzyy-Shyang Lin (2019)
10.1103/PhysRevB.99.184305
Data-driven material models for atomistic simulation
M. A. Wood (2019)
10.1002/ADTS.201970018
Composite Materials: Effect of Constituent Materials on Composite Performance: Exploring Design Strategies via Machine Learning (Adv. Theory Simul. 6/2019)
Chun-Teh Chen (2019)
10.1093/nar/gky1004
RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy
S. Burley (2019)
10.1038/s41467-018-08222-6
Machine learning coarse grained models for water
Henry Chan (2019)
10.1038/srep17960
Mapping Chemical Selection Pathways for Designing Multicomponent Alloys: an informatics framework for materials design
Srikant Srinivasan (2015)
10.1021/acs.jctc.7b00521
Machine Learning Force Field Parameters from Ab Initio Data.
Y. Li (2017)
10.1038/srep11551
A predictive machine learning approach for microstructure optimization and materials design
Ruoqian Liu (2015)
10.1016/J.EML.2018.08.002
Accurate interatomic force field for molecular dynamics simulation by hybridizing classical and machine learning potentials
Peng Wang (2018)
10.1021/ci00057a005
SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
D. Weininger (1988)
10.1002/jcc.25841
Development of a new parameter optimization scheme for a reactive force field based on a machine learning approach
H. Nakata (2019)
10.1116/1.5044381
Progress in ligand design for monolayer-protected nanoparticles for nanobio interfaces.
Matthew D. Manning (2018)
10.1016/j.commatsci.2018.04.033
Predicting the thermodynamic stability of perovskite oxides using machine learning models
W. Li (2018)
10.1039/c5sm01742d
Prediction of solvent-induced morphological changes of polyelectrolyte diblock copolymer micelles.
Nan K Li (2015)
10.1111/j.1432-1033.1977.tb11885.x
The Protein Data Bank
F. Bernstein (1977)
10.1002/ADTS.201900056
Effect of Constituent Materials on Composite Performance: Exploring Design Strategies via Machine Learning
C. Chen (2019)



Semantic Scholar Logo Some data provided by SemanticScholar