Online citations, reference lists, and bibliographies.
← Back to Search

DS Schottky Barrier Cylindrical GAA MOSFET: Nanosensor For Biochips

KumarManoj, HaldarSubhasis, GuptaMridula, S. GuptaRadhey
Published 2016 · Materials Science

Save to my Library
Download PDF
Analyze on Scholarcy
Share
This paper presents an extensive mathematical study of a proposed nanogap-embedded dopant-segregated (DS) Schottky barrier (SB) cylindrical gate all-around (CGAA) metal-oxide-semiconductor field-effect transistor (MOSFET) of negatively/positively charged and neutral species observed by numerical simulation using an Atlas three-dimensional device simulator for electrical and label-free detection of bio/chemical (DNA, pH) and neutral species (protein) respectively as a nanosensor in the biomedical field at high sensitivity for direct electronic readout. This is the first time that the use of a nanogap-embedded DS-SB-CGAA MOSFET as a bio/chemical sensor has been reported. The threshold voltage (V th) shift and change in current are considered as sensing metrics to detect biological or chemical species when they are immobilized in the carvel-built region. The shift in on current (I on) of the nanogap-embedded DS-SB-CGAA MOSFET is also taken as a sensing metric, and better performance is observed compared to a...
This paper references
10.1063/1.3291617
An underlap field-effect transistor for electrical detection of influenza
Kwang-Won Lee (2010)
10.1109/TED.2013.2292852
A Dual-Material Gate Junctionless Transistor With High- $k$ Spacer for Enhanced Analog Performance
R. K. Baruah (2014)
10.1109/TED.2009.2026318
Dopant-Segregated Schottky Source/Drain Double-Gate MOSFET Design in the Direct Source-to-Drain Tunneling Regime
R. Vega (2009)
10.1016/0250-6874(85)87009-8
The impact of MOSFET-based sensors
P. Bergveld (1985)
10.1038/nnano.2010.15
Nanowire transistors without junctions.
Jean-Pierre Colinge (2010)
10.1109/LED.2009.2031254
Optimization of RF Performance of Metallic Source/Drain SOI MOSFETs Using Dopant Segregation at the Schottky Interface
R. Valentin (2009)
10.1016/S0925-4005(99)00135-5
ION-SENSITIVE FIELD-EFFECT TRANSISTORS FABRICATED IN A COMMERCIAL CMOS TECHNOLOGY
J. Bausells (1999)
10.1109/TNANO.2009.2031230
A Computational Study of Dopant-Segregated Schottky Barrier MOSFETs
L. Zeng (2010)
10.1016/J.SNB.2009.11.067
Palladium/silicon nanowire Schottky barrier-based hydrogen sensors
K. Skucha (2010)
10.1109/ICICDT.2011.5783243
Evaluation of DC and AC performance of junctionless MOSFETs in the presence of variability
X. Qian (2011)
10.1109/TDMR.2012.2237175
Hot-Carrier Reliability of Gate-All-Around MOSFET for RF/Microwave Applications
R. Gautam (2013)
10.1088/0268-1242/24/2/025022
Enhanced carrier injection in Schottky contacts using dopant segregation: a Monte Carlo research
E. Pascual (2009)
10.1016/0265-928X(86)85010-6
The development and application of FET-based biosensors.
P. Bergveld (1986)
10.1063/1.3284089
Formation of steep, low Schottky-barrier contacts by dopant segregation during nickel silicidation
S. Feste (2010)
10.1016/S0925-4005(02)00301-5
Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years
P. Bergveld (2003)
10.1016/0040-6090(92)90020-C
Surface plasmon resonance studies of chemisorbed biotin-streptavidin multilayers
H. Morgan (1992)
10.1007/S00216-005-3400-4
Carbon nanotube transistors for biosensing applications.
G. Grüner (2005)
10.5772/18460
Source and Drain Junction Engineering for Enhanced Non-Volatile Memory Performance
Sung-Jin Choi (2011)
10.1109/TED.2007.909059
Design Considerations of Silicon Nanowire Biosensors
P.R. Nair (2007)
10.1109/LED.2011.2158978
Comparison of Junctionless and Conventional Trigate Transistors With $L_{g}$ Down to 26 nm
R. Rios (2011)
10.1016/J.SNB.2014.03.099
Electrical characterization of high performance, liquid gated vertically stacked SiNW-based 3D FET biosensors
E. Buitrago (2014)
10.1016/j.bios.2013.12.014
Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor.
J. Kim (2014)
10.1038/nnano.2007.180
A dielectric-modulated field-effect transistor for biosensing.
Hyungsoon Im (2007)
10.1002/PSSB.200404936
Calibration of a pH sensitive buried channel silicon‐on‐insulator MOSFET for sensor applications
B. Ashcroft (2004)
10.1109/LED.2011.2131111
CMOS Inverter Based on Schottky Source–Drain MOS Technology With Low-Temperature Dopant Segregation
G. Larrieu (2011)
10.1149/2.019205JSS
Ambipolar Conduction Behavior on High Performance Schottky Barrier Source/Drain Gate-All-Around Si Nanowire Nonvolatile SONOS Memory
Ching-Yuan Ho (2012)
Novel dielectric-modulated field-effect transistor for label-free DNA detection
Changhoon Kim (2008)
10.1016/S1369-7021(10)70201-7
Electrical nanogap devices for biosensing
X. Chen (2010)
10.1088/0268-1242/27/4/045004
Engineering spacers in dopant-segregated Schottky barrier SOI MOSFET for nanoscale CMOS logic circuits
G. Patil (2012)
10.1021/ja901704t
Mass-produced nanogap sensor arrays for ultrasensitive detection of DNA.
S. Roy (2009)
10.1109/TED.2005.860659
A charge-modulated FET for detection of biomolecular processes: conception, modeling, and simulation
M. Barbaro (2006)
10.1109/TED.2007.896598
Analog/RF Performance of Si Nanowire MOSFETs and the Impact of Process Variation
R. Wang (2007)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar