Online citations, reference lists, and bibliographies.

Sequential Structural And Fluid Dynamics Analysis Of Balloon-Expandable Coronary Stents.

D. Martin
Published 2013 · Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
................................................................................................................. i DECLARATION ......................................................................................................... ii ACKNOWLEDGEMENTS ....................................................................................... iii NOMENCLATURE .................................................................................................... iv TABLE OF CONTENTS ............................................................................................ xi LIST OF FIGURES ................................................................................................. xvii LIST OF TABLES ................................................................................................... xxv CHAPTER 1: INTRODUCTION ................................................................................ 1 1.
This paper references
10.1016/j.jbiomech.2008.01.027
On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method.
F. Gervaso (2008)
Computational methods for plasticity : theory and applications
E. D. S. Neto (2008)
10.1161/01.CIR.95.2.363
Serial follow-up after optimized ultrasound-guided deployment of Palmaz-Schatz stents. In-stent neointimal proliferation without significant reference segment response.
H. Mudra (1997)
10.1114/1.1588654
Three-Dimensional Computational Fluid Dynamics Modeling of Alterations in Coronary Wall Shear Stress Produced by Stent Implantation
J. LaDisa (2004)
10.1080/10255841003766845
Computational structural modelling of coronary stent deployment: a review
David Mingot Martín (2011)
10.1186/1475-925X-5-40
Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling
J. LaDisa (2006)
10.1016/J.IJCARD.2004.12.033
Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery.
D. Liang (2005)
10.1016/0735-1097(92)90476-4
Restenosis and the proportional neointimal response to coronary artery injury: results in a porcine model.
R. Schwartz (1992)
Computational fluid dynamics : the basics with applications
J. Anderson (1995)
10.1115/1.3118764
Comparison of near-wall hemodynamic parameters in stented artery models.
Nandini Duraiswamy (2009)
10.1007/s10439-010-9962-0
The Influence of Strut-Connectors in Stented Vessels: A Comparison of Pulsatile Flow Through Five Coronary Stents
Sanjay Pant (2010)
10.1016/J.JBIOMECH.2006.11.009
Stent expansion in curved vessel and their interactions: a finite element analysis.
Wei Wu (2007)
10.1007/978-3-540-71001-1
Nonlinear Finite Element Methods
P. Wriggers (2008)
10.1016/S0002-9149(99)00053-3
Tissue proliferation within and surrounding Palmaz-Schatz stents is dependent on the aggressiveness of stent implantation technique.
R. Hoffmann (1999)
10.1016/0735-1097(94)90126-0
Morphologic characteristics of lesion formation and time course of smooth muscle cell proliferation in a porcine proliferative restenosis model.
A. J. Carter (1994)
A numerical analysis of coronary stets
D Martin (2011)
Finite element stent design
M. Beule (2008)
10.1016/j.jcin.2010.08.018
The effect of shear stress on neointimal response following sirolimus- and paclitaxel-eluting stent implantation compared with bare-metal stents in humans.
Michail I. Papafaklis (2010)
10.1007/S13239-011-0047-5
Optical Coherence Tomography for Patient-specific 3D Artery Reconstruction and Evaluation of Wall Shear Stress in a Left Circumflex Coronary Artery
L. Ellwein (2011)
10.1007/s13239-015-0219-9
Sequential Structural and Fluid Dynamics Analysis of Balloon-Expandable Coronary Stents: A Multivariable Statistical Analysis
D. Martín (2015)
10.1152/japplphysiol.00086.2010
Local hemodynamic changes caused by main branch stent implantation and subsequent virtual side branch balloon angioplasty in a representative coronary bifurcation.
A. R. Williams (2010)
10.1016/S0002-9149(00)01268-6
Restenosis after coronary placement of various stent types.
A. Kastrati (2001)
10.1161/01.RES.84.4.378
Balloon-artery interactions during stent placement: a finite element analysis approach to pressure, compliance, and stent design as contributors to vascular injury.
C. Rogers (1999)
10.1016/S1885-5857(06)60044-3
[Influence of shear stress on in-stent restenosis: in vivo study using 3D reconstruction and computational fluid dynamics].
M. Sanmartín (2006)
10.1016/J.JBIOMECH.2004.07.022
Cardiovascular stent design and vessel stresses: a finite element analysis.
C. Lally (2005)
10.1115/1.4005476
Sequential structural and fluid dynamic numerical simulations of a stented bifurcated coronary artery.
Stefano Morlacchi (2011)
10.1007/s10439-009-9836-5
A Novel Simulation Strategy for Stent Insertion and Deployment in Curved Coronary Bifurcations: Comparison of Three Drug-Eluting Stents
P. Mortier (2009)
10.1016/J.MSEB.2011.03.013
Finite element analyses for design evaluation of biodegradable magnesium alloy stents in arterial vessels
Wei Wu (2011)
10.1152/AJPHEART.00934.2004
Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling.
G. Holzapfel (2005)
10.1007/s10439-007-9357-z
A Numerical Model to Study the Interaction of Vascular Stents with Human Atherosclerotic Lesions
Dimitrios E. Kiousis (2007)
10.1115/1.1613674
Analysis of prolapse in cardiovascular stents: a constitutive equation for vascular tissue and finite-element modelling.
P. Prendergast (2003)
10.1016/j.jbiomech.2007.12.005
Effects of different stent designs on local hemodynamics in stented arteries.
R. Balossino (2008)
10.1136/heart.88.4.401
Coronary artery stretch versus deep injury in the development of in-stent neointima
J. Gunn (2002)
10.1016/j.biomaterials.2011.07.059
Multiobjective design optimisation of coronary stents.
Sanjay Pant (2011)
10.1056/NEJM199408253310802
A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators.
D. Fischman (1994)
10.1098/rsif.2011.0675
Impact of main branch stenting on endothelial shear stress: role of side branch diameter, angle and lesion
H. Chen (2011)
10.1007/S13239-010-0028-0
A Numerical Methodology to Fully Elucidate the Altered Wall Shear Stress in a Stented Coronary Artery
J. Murphy (2010)
10.1016/j.medengphy.2010.10.009
Drug-eluting stents for coronary artery disease: a review.
D. Martín (2011)
10.1161/01.CIR.0000066914.95878.6D
Augmentation of Wall Shear Stress Inhibits Neointimal Hyperplasia After Stent Implantation: Inhibition Through Reduction of Inflammation?
S. Carlier (2003)
10.1152/JAPPLPHYSIOL.00872.2004
Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models.
J. LaDisa (2005)
10.1152/AJPHEART.00897.2003
Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability.
H. Himburg (2004)
Handbook of Coronary Stents
P. Serruys (1997)
10.1016/S0735-1097(02)02123-X
Selection of coronary stents.
A. Colombo (2002)
10.1016/j.medengphy.2008.11.002
Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry.
Claudio Capelli (2009)
10.1186/1475-925X-7-23
Simulation of stent deployment in a realistic human coronary artery
Frank JH Gijsen (2008)
10.1056/NEJMOA012843
A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization.
M. Morice (2002)
10.1016/j.jbiomech.2010.03.050
Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy.
H. Zahedmanesh (2010)
10.1115/1.2194067
Developing pulsatile flow in a deployed coronary stent.
D. Rajamohan (2006)
10.1016/J.JMATPROTEC.2007.06.010
Analysis of wall shear stress in stented coronary artery using 3D computational fluid dynamics modeling
V. Dehlaghi (2008)
10.1007/s10439-005-2499-y
Computational Study of Fluid Mechanical Disturbance Induced by Endovascular Stents
Taewon Seo (2005)
10.1161/CIRCULATIONAHA.105.591206
Randomized, Double-Blind, Multicenter Study of the Endeavor Zotarolimus-Eluting Phosphorylcholine-Encapsulated Stent for Treatment of Native Coronary Artery Lesions: Clinical and Angiographic Results of the ENDEAVOR II Trial
J. Fajadet (2007)
A coupled finite element analysis - computational fluid dynamics simulation of blood flow in a stented coronary artery
D Martin (2009)
10.3233/BIR-2010-0568
A full-range, multi-variable, CFD-based methodology to identify abnormal near-wall hemodynamics in a stented coronary artery.
Jonathan Murphy (2010)
10.1016/j.medengphy.2008.11.005
The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents.
Ian Owens Pericevic (2009)
10.1088/1748-6041/2/1/S05
Time-dependent 3D simulations of the hemodynamics in a stented coronary artery.
Isam Faik (2007)
10.1016/S0735-1097(03)00119-0
Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial.
J. Pache (2003)
10.1016/J.CMA.2008.07.019
Numerical simulation of drug eluting coronary stents: Mechanics, fluid dynamics and drug release
P. Zunino (2009)
Fundamentals of Anatomy and Physiology
F. Martini (1997)
10.1201/9780429174391
Continuum mechanics for engineers
G. Mase (1992)
10.1161/01.CIR.103.13.1740
Relationship Between Neointimal Thickness and Shear Stress After Wallstent Implantation in Human Coronary Arteries
J. Wentzel (2001)
10.1002/ccd.20026
The NUGGET study: NIR ultra gold‐gilded equivalency trial
N. Reifart (2004)
10.1152/japplphysiol.91519.2008
Effects of stent sizing on endothelial and vessel wall stress: potential mechanisms for in-stent restenosis.
H. Chen (2009)
10.1152/AJPHEART.01107.2004
Alterations in wall shear stress predict sites of neointimal hyperplasia after stent implantation in rabbit iliac arteries.
J. LaDisa (2005)
10.1016/J.JACC.2004.01.024
The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de novo lesions in small native coronary arteries (C-SIRIUS).
E. Schampaert (2004)
10.1152/JAPPLPHYSIOL.01329.2003
Stent design properties and deployment ratio influence indexes of wall shear stress: a three-dimensional computational fluid dynamics investigation within a normal artery.
J. LaDisa (2004)
10.1007/s10237-010-0196-8
Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning
D. Gastaldi (2010)
Nonlinear con-tinuum mechanics for finite element anal-ysis
Jeremy S. De Bonet (1997)
10.1016/S0002-9149(98)00189-1
Pathobiologic responses to stenting.
E. Edelman (1998)
10.1056/NEJMOA035071
Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery.
J. Moses (2003)
10.1007/s10439-010-0057-8
Finite Element Shape Optimization for Biodegradable Magnesium Alloy Stents
W. Wu (2010)
10.1142/S1758825112500135
ARTERIAL WALL MECHANICS AND CLINICAL IMPLICATIONS AFTER CORONARY STENTING: COMPARISONS OF THREE STENT DESIGNS
Linxia Gu (2012)
10.1016/j.actbio.2011.05.032
A corrosion model for bioabsorbable metallic stents.
J. A. Grogan (2011)
10.1016/J.MEDENGPHY.2006.04.003
Simulation and experimental observation of contact conditions between stents and artery models.
Kazuto Takashima (2007)
10.1016/S0140-6736(03)14462-5
Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: double-blind, randomised controlled trial (E-SIRIUS)
J. Schofer (2003)
10.1243/09544119JEIM695
The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries
M. Early (2010)
A coupled finite element analysis - computational fluid dynamics simulation of local hemodynamic alterations in a stented coronary artery
D Martin (2008)
10.1056/NEJM199408253310801
A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group.
P. Serruys (1994)
10.1016/S0021-9290(06)84631-2
Stented artery biomechanics and device design optimization
J. Moore (2006)
10.1016/j.jvs.2004.02.012
A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease
G. Stone (2004)
10.1115/1.4002238
The Relation Between the Arterial Stress and Restenosis Rate After
L. Gu (2010)
10.1115/1.2246236
Effects of stent design parameters on normal artery wall mechanics.
Julian Bedoya (2006)
10.1136/heart.83.4.462
Coronary stent symmetry and vascular injury determine experimental restenosis
C. Schulz (2000)
10.1007/S13239-012-0104-8
A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach
C. Conway (2012)
10.1080/10255840108908007
Finite-element Analysis of a Stenotic Artery Revascularization Through a Stent Insertion
F. Auricchio (2001)
10.1115/SBC2008-192768
Analysis of Side Branch Access During Bifurcation Stenting
P. Mortier (2008)
10.1016/S0140-6736(97)11128-X
Randomised comparison of implantation of heparin-coated stents with balloon angioplasty in selected patients with coronary artery disease (Benestent II)
P. W. Serruys (1998)
10.1115/1.1934122
Blood flow in stented arteries: a parametric comparison of strut design patterns in three dimensions.
Y. He (2005)
Asymmetric flows of non-Newtonian fluids in symmetric stenosed artery
Hun Jung (2004)
10.1161/01.CIR.99.1.44
Pathology of acute and chronic coronary stenting in humans.
A. Farb (1999)
Developed pulsatile flow in a deployed coronary stent.
R. Banerjee (2007)
10.1161/01.CIR.0000019071.72887.BD
Morphological Predictors of Restenosis After Coronary Stenting in Humans
A. Farb (2002)
10.1016/j.jmbbm.2010.11.003
Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents.
D. Gastaldi (2011)
10.1016/b978-0-7506-8560-3.x0001-1
Introduction to Continuum Mechanics
W. M. Lai (2009)
10.1023/A:1020843529530
Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science
G. Holzapfel (2000)
10.1053/EUHJ.2000.2153
Coronary in-stent restenosis - predictors, treatment and prevention.
R. Hoffmann (2000)
10.1016/S0735-1097(97)00450-6
In-stent restenosis: contributions of inflammatory responses and arterial injury to neointimal hyperplasia.
R. Kornowski (1998)
10.1161/01.CIR.91.12.2995
Endovascular stent design dictates experimental restenosis and thrombosis.
C. Rogers (1995)
10.1007/s10439-008-9606-9
Experimental Studies and Numerical Analysis of the Inflation and Interaction of Vascular Balloon Catheter-Stent Systems
Dimitrios E. Kiousis (2008)
10.1016/J.JMATPROTEC.2004.04.396
Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion
S. Chua (2004)
Computational Fluid Dynamics: A Practical Approach
J. Tu (2007)
10.1161/01.CIR.103.23.2816
[Intracoronary Stenting and Angiographic Results Strut Thickness Effect on Restenosis Outcome (ISAR-STEREO) Trial].
A. Kastrati (2012)
10.1016/J.JACC.2006.03.042
Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk.
M. Joner (2006)
10.1016/J.EUROMECHFLU.2012.01.011
Computational fluid dynamics of stented coronary bifurcations studied with a hybrid discretization method
C. Chiastra (2012)
10.1007/S10237-004-0039-6
Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall
F. Migliavacca (2004)
10.1186/1475-925X-4-59
Axial stent strut angle influences wall shear stress after stent implantation: analysis using 3D computational fluid dynamics models of stent foreshortening
J. LaDisa (2005)
European cardiovascular disease statistics
S. Allender (2008)
10.3844/AJASSP.2008.340.346
Effect of Stent Geometry on Phase Shift between Pressure and Flow Waveforms in Stented Human Coronary Artery
V. Dehlaghi (2008)
A randomized comparison of a durable polymer Everolimus-eluting stent with a bare metal coronary stent: The SPIRIT first trial.
P. Serruys (2005)
10.1056/NEJM198703193161201
Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty.
U. Sigwart (1987)
10.1114/1.1569268
The Stress–Strain Behavior of Coronary Stent Struts is Size Dependent
B. Murphy (2004)
10.1115/1.1835362
Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs.
G. Holzapfel (2005)
10.1115/1.4005542
Optimization of cardiovascular stent design using computational fluid dynamics.
Timothy J. Gundert (2012)
10.1007/s11517-009-0432-5
Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis
H. Zahedmanesh (2009)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar