Online citations, reference lists, and bibliographies.
← Back to Search

Intravoxel Incoherent Motion In Body Diffusion-weighted MRI: Reality And Challenges.

D. Koh, D. Collins, M. Orton
Published 2011 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
OBJECTIVE Diffusion-weighted MRI is increasingly applied in the body. It has been recognized for some time, on the basis of scientific experiments and studies in the brain, that the calculation of apparent diffusion coefficient by simple monoexponential relationship between MRI signal and b value does not fully account for tissue behavior. However, appreciation of this fact in body diffusion MRI is relatively new, because technologic advancements have only recently enabled high-quality body diffusion-weighted images to be acquired using multiple b values. There is now increasing interest in the radiologic community to apply more sophisticated analytic approaches, such as those based on the principles of intravoxel incoherent motion, which allows quantitative parameters that reflect tissue microcapillary perfusion and tissue diffusivity to be derived. CONCLUSION In this review, we discuss the principles of intravoxel incoherent motion as applied to body diffusion-weighted MRI. The evidence for the technique in measuring tissue perfusion is presented and the emerging clinical utility surveyed. The requisites and challenges of quantitative evaluation beyond simple monoexponential relationships are highlighted.
This paper references
10.1148/RADIOLOGY.210.3.R99FE17617
Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging.
I. Yamada (1999)
10.1002/jmri.10353
Single breath‐hold diffusion‐weighted imaging of the abdomen
L. Chow (2003)
10.1002/MRM.1910320109
An evaluation of the sensitivity of the intravoxel incoherent motion (IVIM) method of blood flow measurement to changes in cerebral blood flow
J. Neil (1994)
10.1148/RADIOL.2213010131
Salivary glands and lesions: evaluation of apparent diffusion coefficients with split-echo diffusion-weighted MR imaging--initial results.
N. Yoshino (2001)
10.1148/radiol.11112417
Diffusion-weighted MR imaging for liver lesion characterization: a critical look.
B. Taouli (2012)
10.1002/MRM.1910320407
A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain
R. Henkelman (1994)
Diffusion-weighted MR imaging : applications in the body
D. Koh (2010)
10.1002/jmri.23607
Liver fibrosis: An intravoxel incoherent motion (IVIM) study
A. Chow (2012)
10.1002/mrm.10578
Statistical model for diffusion attenuated MR signal
D. Yablonskiy (2003)
10.1148/radiol.12111327
Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges.
E. Sigmund (2012)
10.1080/028418501127346459
Perfusion-related parameters in intravoxel incoherent motion MR imaging compared with CBV and CBF measured by dynamic susceptibility-contrast MR technique
R. Wirestam (2001)
10.1002/MRM.1910230113
On the precision of diffusion/perfusion imaging by gradient sensitization
J. Pekar (1992)
10.1002/nbm.1441
Intravoxel water diffusion heterogeneity imaging of human high‐grade gliomas
T. Kwee (2010)
10.1016/S0730-725X(01)00431-3
Effect of vasodilator hydralazine on tumor microvascular random flow and blood volume as measured by intravoxel incoherent motion (IVIM) weighted MRI in conjunction with Gd-DTPA-Albumin enhanced MRI.
Z. Wang (2001)
10.1002/jmri.22081
Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast‐enhanced MRI alone and in combination: Preliminary experience
J. Patel (2010)
10.1002/mrm.24563
Error model for reduction of cardiac and respiratory motion effects in quantitative liver DW‐MRI
P. Murphy (2013)
10.1148/RADIOLOGY.168.2.3393671
Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging.
D. Le Bihan (1988)
10.1002/MRM.1910270116
The capillary network: a link between ivim and classical perfusion
Denis Le Bihan (1992)
10.1007/978-3-540-78576-7_2
Techniques and Optimization
D. Collins (2010)
10.1007/978-3-540-78576-7_14
Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display.
T. Takahara (2004)
10.1148/RADIOL.2413060103
Functional evaluation of transplanted kidneys with diffusion-weighted and BOLD MR imaging: initial experience.
H. Thoeny (2006)
Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a two-centre phase I clinical trial
P. Sutton (2010)
10.1002/jmri.23744
Reproducibility of measurement of apparent diffusion coefficients of malignant hepatic tumors: Effect of DWI techniques and calculation methods
So Yeon Kim (2012)
IVIM method measures diffusion and perfusion.
D. Lebihan (1990)
10.1016/j.ucl.2012.01.002
Contemporary imaging of the renal mass.
S. Kang (2012)
10.1002/nbm.1328
Diffusion‐weighted imaging of the prostate and rectal wall: comparison of biexponential and monoexponential modelled diffusion and associated perfusion coefficients
S. F. Riches (2009)
10.2214/AJR.06.1403
Diffusion-weighted MRI in the body: applications and challenges in oncology.
D. Koh (2007)
10.1016/j.mri.2008.07.008
Biexponential apparent diffusion coefficients in prostate cancer.
H. Shinmoto (2009)
10.1016/j.neuroimage.2011.07.089
Record of a single fMRI experiment in May of 1991
K. Kwong (2012)
10.1016/J.MRI.2005.12.008
Biexponential characterization of prostate tissue water diffusion decay curves over an extended b-factor range.
R. Mulkern (2006)
10.1002/mrm.1910160313
Does IVIM measure classical perfusion?
R. Henkelman (1990)
10.1002/mrm.20508
Diffusional kurtosis imaging: The quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
J. H. Jensen (2005)
10.1007/s11934-011-0227-8
Advanced Renal Mass Imaging: Diffusion and Perfusion MRI
A. Gilet (2011)
10.1097/RMR.0b013e3181b48667
Diffusion-Weighted Magnetic Resonance Imaging of the Pancreas
N. C. Balcı (2009)
10.1148/radiol.09090891
Variability of renal apparent diffusion coefficients: limitations of the monoexponential model for diffusion quantification.
J. Zhang (2010)
10.1109/BMEI.2012.6513022
The characteristics of signal contrast for the focal hepatic masses with multi-b DWI
G. Guo (2012)
10.1016/J.RX.2012.06.003
Aplicaciones de la técnica de difusión por resonancia magnética en el manejo de la patología tumoral osteomuscular
J. Vilanova (2012)
10.1016/S0720-048X(97)01161-3
Can the IVIM model be used for renal perfusion imaging?
M. Müller (1998)
10.1002/mrm.10581
Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model
Kevin M. Bennett (2003)
10.1118/1.4736516
In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging.
M. Freiman (2012)
10.1063/1.1695690
Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient
E. Stejskal (1965)
10.1002/MRM.1910290510
On the use of bayesian probability theory for analysis of exponential decay date: An example taken from intravoxel incoherent motion experiments
J. Neil (1993)
10.1002/mrm.22565
An in vivo verification of the intravoxel incoherent motion effect in diffusion‐weighted imaging of the abdomen
A. Lemke (2010)
10.1148/RADIOLOGY.161.2.3763909
MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders.
D. Le Bihan (1986)
10.1016/s1352-8661(99)00013-7
Water diffusion in rat brain in vivo as detected at very large b values is multicompartmental
J. Pfeuffer
Diffusion tensor MRI of the human kid
M Ries (2001)
Non-Gaussian analysis of diffusion weighted MRI in head and neck cancer : a feasibility study
J. Jansen (2008)
Renal artery stenosis : in vivo perfusion MR imag
TA Powers (1991)
10.1016/S0006-3495(76)85660-3
A Fourier method for the analysis of exponential decay curves.
S. Provencher (1976)
10.1002/JMRI.1880010103
Imaging of diffusion and microcirculation with gradient sensitization: Design, strategy, and significance
D. Le Bihan (1991)
10.1002/jmri.1149
Diffusion tensor MRI of the human kidney
M. Ries (2001)
10.1007/s00330-012-2604-1
Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusion-weighted MR imaging in normal liver and metastases
A. Andreou (2012)
10.1148/radiol.12120584
Quantitative measurement of brain perfusion with intravoxel incoherent motion MR imaging.
C. Federau (2012)
10.1002/jmri.23781
Characterization of fast and slow diffusion from diffusion‐weighted MRI of pediatric Crohn's disease
M. Freiman (2013)
10.1002/jmri.1177
Functional evaluation with intravoxel incoherent motion echo‐planar MRI in irradiated salivary glands: A correlative study with salivary gland scintigraphy
L. zhang (2001)
10.1002/jmri.21675
Diffusion‐weighted MRI of hepatic tumor in rats: Comparison between in vivo and postmortem imaging acquisitions
Xihe Sun (2009)
10.1097/00004424-199204000-00005
Magnetic resonance perfusion/diffusion imaging of the excised dog kidney.
D. Pickens (1992)
10.1016/S0098-1672(08)70461-2
Diffusion-Weighted MR Imaging of Kidneys in Healthy Volunteers and Patients With Parenchymal Diseases: Initial Experience
A. D. Levy (2006)
10.2217/IIM.12.48
Diffusion-weighted MRI techniques for the evaluation of focal hepatic lesions
E. Kocakoç (2012)
[Intravoxel incoherent motion (IVIM) imaging using an experimental MR unit with small bore].
H. Sakuma (1989)
10.1038/nrurol.2011.222
The emerging role of diffusion-weighted MRI in prostate cancer management
E. M. Lawrence (2012)
10.1007/s00330-006-0201-x
Colorectal hepatic metastases: quantitative measurements using single-shot echo-planar diffusion-weighted MR imaging
D. Koh (2006)
10.1148/RADIOLOGY.178.2.1987621
Renal artery stenosis: in vivo perfusion MR imaging.
T. Powers (1991)
10.1097/RLI.0b013e3181b62271
Differentiation of Pancreas Carcinoma From Healthy Pancreatic Tissue Using Multiple b-Values: Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion Derived Parameters
A. Lemke (2009)
10.1148/RADIOL.2313021587
Normal and transplanted rat kidneys: diffusion MR imaging at 7 T.
D. Yang (2004)
10.1148/radiol.2493081301
Intravoxel incoherent motion perfusion MR imaging: a wake-up call.
D. Le Bihan (2008)
10.1097/00002142-199500720-00003
Magnetic Resonance Imaging of the Liver
R. E. Larson (1995)
10.1007/s00330-012-2425-2
Triple-negative invasive breast cancer on dynamic contrast-enhanced and diffusion-weighted MR imaging: comparison with other breast cancer subtypes
J. H. Youk (2012)
10.1016/S0720-048X(02)00303-0
Basic principles of diffusion-weighted imaging.
R. Bammer (2003)
10.1007/s00330-009-1679-9
Evaluation of renal allograft function early after transplantation with diffusion-weighted MR imaging
U. Eisenberger (2009)
10.1007/s00330-012-2687-8
Quantitative analysis of diffusion-weighted magnetic resonance imaging in malignant breast lesions using different b value combinations
L. Nilsen (2012)
10.1016/j.media.2012.12.001
Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves
M. Freiman (2013)
10.1148/radiol.2493080080
Liver cirrhosis: intravoxel incoherent motion MR imaging--pilot study.
A. Luciani (2008)



This paper is referenced by
10.1002/nbm.3453
Formation of parametric images using mixed‐effects models: a feasibility study
Husan-Ming Huang (2016)
10.1097/MD.0000000000012071
Meta-analysis of intravoxel incoherent motion magnetic resonance imaging in differentiating focal lesions of the liver
H. Wu (2018)
10.1007/978-3-319-62977-3
Diffusion Weighted Imaging of the Hepatobiliary System: Techniques and Clinical Applications
C. Matos (2021)
10.1186/s13244-019-0703-0
How clinical imaging can assess cancer biology
R. García-Figueiras (2019)
10.1016/j.mri.2016.12.023
Intravoxel incoherent motion and diffusion tensor imaging of early renal fibrosis induced in a murine model of streptozotocin induced diabetes.
Y. Y. Yan (2017)
10.1097/MD.0000000000005910
Apparent diffusion coefficient normalization of normal liver
J. Zhu (2017)
10.1148/radiol.2015142156
Differentiation of Low- and High-Grade Pediatric Brain Tumors with High b-Value Diffusion-weighted MR Imaging and a Fractional Order Calculus Model.
Y. Sui (2015)
Intravoxel Incoherent Motion (IVIM) MR Imaging for Prostate Cancer: An Evaluation of Diffusion Coefficient and Perfusion Fraction Derived from Different b-Value Combinations
Y. Pang (2012)
10.1371/journal.pone.0072856
Dependence of Brain Intravoxel Incoherent Motion Perfusion Parameters on the Cardiac Cycle
C. Federau (2013)
10.1007/s00330-015-3986-7
Intravoxel incoherent motion magnetic resonance imaging to predict vesicoureteral reflux in children with urinary tract infection
J. Kim (2015)
10.1101/179440
IVIM parameters have good scan-rescan reproducibility when evidential motion contaminated and poorly fitted image data are removed
O. Chevallier (2017)
10.14303/IMAGING-MEDICINE.1000105
Clinical applications of diffusion-weighted magnetic resonance imaging
Nguyen Minh Duc (2018)
10.1136/rmdopen-2019-001008
ASDAS is associated with both the extent and intensity of DW-MRI spinal inflammation in active axial spondyloarthritis
H. Y. Chung (2019)
10.1186/s12885-020-07308-z
Differentiating the lung lesions using Intravoxel incoherent motion diffusion-weighted imaging: a meta-analysis
Jianye Liang (2020)
10.1002/jmri.26995
Diffusion Metrics for Staging Pancreatic Fibrosis and Correlating With Epithelial‐Mesenchymal Transition Markers in a Chronic Pancreatitis Rat Model at 11.7T MRI
Tingting Zhang (2019)
10.1007/s00330-016-4630-x
Assessment of early treatment response to neoadjuvant chemotherapy in breast cancer using non-mono-exponential diffusion models: a feasibility study comparing the baseline and mid-treatment MRI examinations
R. Bedair (2016)
10.1148/radiol.12111327
Intravoxel incoherent motion and diffusion-tensor imaging in renal tissue under hydration and furosemide flow challenges.
E. Sigmund (2012)
10.3348/kjr.2016.17.6.853
Comparison of Biexponential and Monoexponential Model of Diffusion-Weighted Imaging for Distinguishing between Common Renal Cell Carcinoma and Fat Poor Angiomyolipoma
Yuqin Ding (2016)
10.1002/jmri.26677
Building blocks for thoracic MRI: Challenges, sequences, and protocol design
C. Raptis (2019)
10.4329/wjr.v8.i9.785
Diffusion weighted imaging: Technique and applications
Vinit Baliyan (2016)
10.1007/s00247-015-3342-8
Childhood extracranial neoplasms: the role of imaging in drug development and clinical trials
Lucy A. Fowkes (2015)
10.1186/s40644-020-0289-2
Intravoxel incoherent motion and ADC measurements for differentiating benign from malignant thyroid nodules: utilizing the most repeatable region of interest delineation at 3.0 T
M. Song (2020)
10.1002/hbm.24758
On the sensitivity of the diffusion MRI signal to brain activity in response to a motor cortex paradigm
A. de Luca (2019)
10.1259/bjr.20130807
Diffusion-weighted imaging: determination of the best pair of b-values to discriminate breast lesions.
L. Nogueira (2014)
10.1007/s00330-013-2889-8
Intravoxel incoherent motion MR imaging: comparison of diffusion and perfusion characteristics between nasopharyngeal carcinoma and post-chemoradiation fibrosis
V. Lai (2013)
10.1016/J.NIMA.2013.08.078
Study of the correlation of IVIM parameter maps with FDG PET
G. Delso (2014)
10.1007/s00261-017-1208-2
Liver fibrosis: in vivo evaluation using intravoxel incoherent motion-derived histogram metrics with histopathologic findings at 3.0 T
Fubi Hu (2017)
10.1002/mrm.28080
Removing rician bias in diffusional kurtosis of the prostate using real‐data reconstruction
R. Goodburn (2019)
10.1118/1.4736516
In vivo assessment of optimal b-value range for perfusion-insensitive apparent diffusion coefficient imaging.
M. Freiman (2012)
10.1259/bjr.20170636
Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T.
H. K. Lim (2018)
10.1088/1361-6560/ab8105
Denoising of multi b-value diffusion-weighted MR images using deep image prior.
Yu-Chun Lin (2020)
10.1148/radiol.14140759
Intravoxel incoherent motion diffusion-weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters.
Y. Lee (2015)
See more
Semantic Scholar Logo Some data provided by SemanticScholar