← Back to Search

DOI: 10.2307/3318684

# Quadratic Covariation And An Extension Of Itô's Formula

H. Föllmer, P. Protter, A. Shiryayev

Published 1995 · Mathematics

Let X be a standard Brownian motion. We show that for any locally square integrable functionfthe quadratic covariation [f(X), X] exists as the usual limit of sums converging in probability. For an absolutely continuous function F with derivativef, It6's formula takes the form F(Xt) = F(Xo) + Jj f(X,) dXs + ? [f(X), X]t. This is extended to the time-dependent case. As an example, we introduce the local time of Brownian motion at a continuous curve.

This paper references

Stochastic integration and differential equations : a new approach

P. Protter (1990)

10.1214/AOP/1176988870

Decomposition of Dirichlet Processes and its Application

Terry Lyons (1994)

Dirichlet forms and Markov processes

M. Fukushima (1980)

This paper is referenced by

10.1023/A:1013899603656

Estimation of the Density of Hypoelliptic Diffusion Processes with Application to an Extended Itô's Formula

X. Bardina (2002)

Non-smooth Brownian Martingales and stochastic integral representations

D. M. Wroblewski (2007)

A generalized class of Lyons-Zheng

F. Russo (2001)

10.1198/016214502760301228

Probability and Finance: It's Only a Game!

F. Delbaen (2002)

10.1016/S0304-4149(00)00058-2

Generalization of Itô's formula for smooth nondegenerate martingales

S. Moret (2001)

10.1142/S0219493718500302

Functional Meyer-Tanaka Formula

Yuri F. Saporito (2014)

10.1007/978-3-540-30788-4

From Stochastic Calculus to Mathematical Finance

Y. Kabanov (2006)

10.1137/S0040585X97976829

Strong Markov Local Dirichlet Processes and Stochastic Differential Equations

H. Engelbert (1999)

10.1023/A:1026440719120

Integration with respect to local time

N. Eisenbaum (2000)

10.1214/AOP/1020107768

Generalized Integration and Stochastic ODEs

F. Flandoli (2002)

10.1007/978-3-540-71189-6_2

A Change-of-Variable Formula with Local Time on Curves

G. Peskir (2005)

10.1214/EJP.V12-468

A Generalized Ito's Formula in Two-Dimensions and Stochastic Lebesgue-Stieltjes Integrals

Chunrong Feng (2007)

10.31390/COSA.5.1.09

Itô's formula for a sub-fractional Brownian motion

Litan Yan (2011)

10.1090/S0002-9939-99-04794-2

Brownian space-time functions of zero quadratic variation depend only on time

P. Fitzsimmons (1999)

10.1080/17442509708834115

Semimartingale characterization of generalized derivatives

M. Mania (1997)

10.1016/J.JMAA.2014.11.046

Integral with respect to the $G$-Brownian local time

L. Yan (2012)

Weak Dirichlet Processes with a Stochastic Control Perspective

J. Clément (2006)

10.1023/B:POTA.0000021332.71490.c6

Formule d'Itô pour des Diffusions Uniformément Elliptiques, et Processus de Dirichlet

K. Dupoiron (2004)

10.1016/S0304-4149(97)00026-4

An extension of Ito's formula for elliptic diffusion processes

X. Bardina (1997)

10.1016/S0378-4754(00)00224-X

Strong discrete time approximation of stochastic differential equations with time delay

U. Küchler (2000)

10.1214/12-AAP883

Weak approximations for Wiener functionals

Dorival Leao (2013)

Estimation in Financial Models RISKLAB

Anja Going (1996)

A Change-of-Variable Formula with Local Time on Surfaces

G. Peskir (2004)

10.1023/A:1008778601226

On Dirichlet Processes Associated with Second Order Divergence Form Operators

A. Rozkosz (2001)

Modeling financial assets without semimartingale

R. Coviello (2006)

Brownian Motion on the Sierpinski Gasket and Related Stochastic Differential Equations

Xuan Liu (2016)

10.1051/PS/2010023

Local martingales and filtration shrinkage

H. Föllmer (2011)

10.1007/S004400100151

Stochastic differential equations for Dirichlet processes

R. Bass (2001)

10.1364/JOSAA.21.001962

Modeling turbulent wave-front phase as a fractional Brownian motion: a new approach.

D. G. Pérez (2004)

On the existence of a certain class of nonlinear stochastic processes

Dialid Santiago Ramírez (2015)

Continuous-Time Portfolio Optimization under Partial Information and Convex Constraints: Deriving Explicit Results

Christian Vonwirth (2017)

10.1007/978-3-540-44671-2_24

Principal Values of the Integral Functionals of Brownian Motion: Existence, Continuity and an Extension of Itô’s Formula

A. S. Cherny (2001)

See more