Online citations, reference lists, and bibliographies.
← Back to Search

Starch Microspheres Induce Pulsatile Delivery Of Drugs And Peptides Across The Epithelial Barrier By Reversible Separation Of The Tight Junctions.

E. Björk, U. Isaksson, P. Edman, P. Artursson
Published 1995 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Non-parenteral administration of peptide drugs is prevented by the limited permeability of the epithelia lining the mucosal tissues. As a new approach to non-parenteral delivery, degradable starch microspheres (dsm) were coated with insulin and administered to the mucosal side of monolayers of human intestinal epithelial (Caco-2) cells in vitro. The microspheres induced a pulsed delivery of insulin across the epithelium that lasted for 1-2 h. The pulsed delivery correlated with a reversible appearance of focal dilatations in the tight junctions between the epithelial cells, indicating that dsm enhance the delivery of insulin by the paracellular route. These results provide an explanation for the previously observed absorption enhancing properties of dsm.
This paper references
10.1016/0378-5173(90)90232-S
Characterization of degradable starch microspheres as a nasal delivery system for drugs
E. Björk (1990)
10.1016/0140-6736(92)90340-9
Intestinal epithelial cell protein phosphorylation in enteropathogenic Escherichia coli diarrhoea
H. A. Manjarrez-Hernández (1992)
10.1016/0378-5173(87)90216-X
Bioadhesive microspheres as a potential nasal drug delivery system
L. Illum (1987)
10.1016/S0140-6736(89)92954-1
ORAL DELIVERY OF INSULIN
YoughW. Cho (1989)
10.1152/AJPCELL.1990.258.1.C77
Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia.
K. Atisook (1990)
10.1002/JPS.2600810908
Epithelial transport of drugs in cell culture. VII: Effects of pharmaceutical surfactant excipients and bile acids on transepithelial permeability in monolayers of human intestinal epithelial (Caco-2) cells.
E. K. Anderberg (1992)
10.1016/S0009-9120(80)91040-1
Effect of time, temperature and freezing on the stability of immunoreactive LH, FSH, TSH, growth hormone, prolactin and insulin in plasma.
J. Livesey (1980)
10.1016/0378-5173(90)90126-O
Investigation of the nasal absorption of biosynthetic human growth hormone in sheep—use of a bioadhesive microsphere delivery system
L. Illum (1990)
10.1136/bmj.1.3298.457
THE CLINICAL USE OF INSULIN *
A. Thomson (1924)
10.1002/JPS.2600790604
Epithelial transport of drugs in cell culture. I: A model for studying the passive diffusion of drugs over intestinal absorptive (Caco-2) cells.
P. Artursson (1990)
10.1016/0160-5402(90)90027-I
Computer-assisted quantification and image processing of whole-body autoradiograms.
R. d'Argy (1990)
10.1016/0163-7258(89)90009-0
Intestinal drug absorption enhancement: an overview.
E. J. van Hoogdalem (1989)
10.1016/0378-5173(91)90252-J
Morphologic examination of rabbit nasal mucosa after nasal administration of degradable starch microspheres
E. Björk (1991)
10.1093/JNCI/59.1.221
One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice.
J. Fogh (1977)
10.1016/0378-5173(88)90236-0
Degradable starch microspheres as a nasal delivery system for insulin
E. Björk (1988)
10.1007/978-1-4757-9960-6_11
The Oral Bioavailability of Peptides and Related Drugs
M. J. Humphrey (1986)
10.1038/356618A0
MARCKS is an actin filament crosslinking protein regulated by protein kinase C and calcium–calmodulin
J. Hartwig (1992)
10.1152/AJPCELL.1987.253.1.C171
Intestinal absorptive cell tight junctions are linked to cytoskeleton.
J. Madara (1987)
10.1126/SCIENCE.3526553
A new approach to the oral administration of insulin and other peptide drugs.
M. Saffran (1986)



This paper is referenced by
10.1016/J.IJPHARM.2006.12.036
Parameters influencing intestinal epithelial permeability and microparticle uptake in vitro.
S. M. Moyes (2007)
10.1016/0168-3659(94)90072-8
Mechanisms of absorption enhancement and tight junction regulation
J. Hochman (1994)
10.1016/j.ejpb.2007.12.001
Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier.
A. Jain (2008)
10.1016/S0142-9612(03)00477-0
Preparation and characterization of starch/cyclodextrin bioadhesive microspheres as platform for nasal administration of Gabexate Mesylate (Foy) in allergic rhinitis treatment.
G. Fundueanu (2004)
10.1002/MACP.200900613
The Development and Characterization of Starch Microspheres Prepared by a Sonochemical Method for the Potential Drug Delivery of Insulin
Olga Grinberg (2010)
10.1007/978-3-319-41129-3_2
Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications
Saurabh Bhatia (2016)
Nasal delivery of peptides using powder carriers based on starch/poly(acrylic acid)
E. Pringels (2006)
10.1556/ABIOL.52.2001.4.6
Tight junctional changes upon microwave and x-ray irradiation.
Z. Pálfia (2001)
10.1016/J.EJPB.2007.03.006
Development and characterisation of interactive mixtures with a fine-particulate mucoadhesive carrier for nasal drug delivery.
N. Fransén (2007)
10.1201/9780203219935-22
In vitro methodologies to study nasal delivery using excised mucosa
A. Koch (2002)
10.1517/17425247.2.5.791
Microparticles for oral delivery of vaccines
G. Mutwiri (2005)
10.1007/s11051-013-1505-9
Facile fabrication of mesoporous ZnO nanospheres for the controlled delivery of captopril
H. B. Bakrudeen (2013)
10.1016/0378-5173(96)04569-3
Nasal delivery of octreotide: Absorption enhancement by particulate carrier systems
C. Oechslein (1996)
10.1016/0378-5173(95)00124-2
Influence of osmolarity on nasal absorption of insulin from the thermogelling polymer ethyl(hydroxyethyl) cellulose
Lena Pereswetoff-Morath (1995)
10.1016/S0264-410X(97)00248-X
Enhancement of immune response to intranasal influenza HA vaccine by microparticle resin.
M. Higaki (1998)
Use of nanoparticles as feed additives to improve digestion and absorption in livestock
S. J. Bunglavan (2014)
10.6092/UNIBO/AMSDOTTORATO/6468
Strategie formulative per la veicolazione nasale di farmaci
Bruno Saladini (2014)
10.1007/978-981-13-3657-7_5
Starch-Based DDSs with Physiological Interactions
Jin Chen (2019)
10.1016/S0928-0987(99)00061-5
Bioavailability of apomorphine following intranasal administration of mucoadhesive drug delivery systems in rabbits.
M. I. Ugwoke (1999)
In vitro toxicity assessment of chitosan nanoparticles
Jing Wen Loh (2010)
Development and Characterization of Irbesartan Nanoparticles
A. Abirami (2016)
10.1016/S0168-3659(97)00193-4
Microparticle resins as a potential nasal drug delivery system for insulin.
M. Takenaga (1998)
10.1016/S0169-409X(01)00152-1
Recent advances in the understanding of uptake of microparticulates across the gastrointestinal lymphatics.
N. Hussain (2001)
Nanoscience and Nanotechnology: Issues and Applications in Agri-Food, Biomedical, and Environmental Sciences
Saikh Mahammed (2012)
10.1016/J.EJPS.2005.08.005
In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form.
Ulrike Bertram (2006)
10.1016/S1773-2247(07)50094-8
The in vitro transport of dihydroergotamine across porcine nasal respiratory and olfactory mucosa and the effect of a novel powder formulation
N. Fransén (2007)
10.1016/j.ijpharm.2015.10.027
Carboxymethyl starch mucoadhesive microspheres as gastroretentive dosage form.
M. A. Lemieux (2015)
10.1002/PSC.66
Current Concepts in Intestinal Peptide Absorption
G. Fricker (1996)
10.1201/B14099-20
Bioadhesive Formulations for Nasal Peptide Delivery
Lisbeth llium (1999)
MULTIFUNCTIONAL NANOCARRIERS ENCAPSULATING ANTI-ALZHEIMER DRUG FOR NASAL DELIVERY TO CENTRAL NERVOUS SYSTEM
Scienze Farmaceutiche (2012)
Développement d'un implant solide biodégradable à base d'amidon réticulé à teneur élevée en amylose, pour la libération contrôlée d'un principe actif
Cyril Désévaux (2003)
10.1089/JAM.2006.19.92
Nasal clearance in health and disease.
L. Illum (2006)
See more
Semantic Scholar Logo Some data provided by SemanticScholar