Online citations, reference lists, and bibliographies.
← Back to Search

Applications Of Support Vector Machine In Genomic Prediction In Pig And Maize Populations

Wei Zhao, Xueshuang Lai, Dengying Liu, Zhenyang Zhang, Peipei Ma, Qishan Wang, Zhe Zhang, Yuchun Pan

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Genomic prediction (GP) has revolutionized animal and plant breeding. However, better statistical models that can improve the accuracy of GP are required. For this reason, in this study, we explored the genomic-based prediction performance of a popular machine learning method, the Support Vector Machine (SVM) model. We selected the most suitable kernel function and hyperparameters for the SVM model in eight published genomic data sets on pigs and maize. Next, we compared the SVM model with RBF and the linear kernel functions to the two most commonly used genome-enabled prediction models (GBLUP and BayesR) in terms of prediction accuracy, time, and the memory used. The results showed that the SVM model had the best prediction performance in two of the eight data sets, but in general, the predictions of both models were similar. In terms of time, the SVM model was better than BayesR but worse than GBLUP. In terms of memory, the SVM model was better than GBLUP and worse than BayesR in pig data but the same with BayesR in maize data. According to the results, SVM is a competitive method in animal and plant breeding, and there is no universal prediction model.