Online citations, reference lists, and bibliographies.
← Back to Search

Assessment Of The Physically-Based Hydrus-1D Model For Simulating The Water Fluxes Of A Mediterranean Cropping System

Domenico Ventrella, Mirko Castellini, Simone Di Prima, Pasquale Garofalo, Laurent Lassabatère

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
In a context characterized by a scarcity of water resources and a need for agriculture to cope the increase of food demand, it is of fundamental importance to increase the water use efficiency of cropping systems. This objective can be meet using several currently available software packages simulating water movements in the “soil–plant–atmosphere” continuum (SPAC). The goal of the paper is to discuss and optimize the strategy for implementing an effective simulation framework in order to describe the main soil water fluxes of a typical horticultural cropping system in Southern Italy based on drip-irrigated watermelon cultivation. The Hydrus-1D model was calibrated by optimizing the hydraulic parameters based on the comparison between simulated and measured soil water content values. Next, a sensitivity analysis of the hydraulic parameters of the Mualem–van Genuchten model was carried out. Hydryus-1D determined simulated soil water contents fairly well, with an average root mean square error below 9%. The main fluxes of the SPAC were confined in a restricted soil volume and were therefore well described by the one-dimensional model Hydrus-1D. Water content at saturation and the fitting parameters α and n were the parameters with the highest impact for describing the soil/plant water balance.