Online citations, reference lists, and bibliographies.
← Back to Search

Carbon Quantum Dots Derived From Different Carbon Sources For Antibacterial Applications

Yanyan Wu, Cong Li, Henny C. van der Mei, Henk J. Busscher, Yijin Ren

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Nanoparticles possess unique features due to their small size and can be composed of different surface chemistries. Carbon quantum dots possess several unique physico-chemical and antibacterial activities. This review provides an overview of different methods to prepare carbon quantum dots from different carbon sources in order to provide guidelines for choosing methods and carbon sources that yield carbon quantum dots with optimal antibacterial efficacy. Antibacterial activities of carbon quantum dots predominantly involve cell wall damage and disruption of the matrix of infectious biofilms through reactive oxygen species (ROS) generation to cause dispersal of infecting pathogens that enhance their susceptibility to antibiotics. Quaternized carbon quantum dots from organic carbon sources have been found to be equally efficacious for controlling wound infection and pneumonia in rodents as antibiotics. Carbon quantum dots derived through heating of natural carbon sources can inherit properties that resemble those of the carbon sources they are derived from. This makes antibiotics, medicinal herbs and plants or probiotic bacteria ideal sources for the synthesis of antibacterial carbon quantum dots. Importantly, carbon quantum dots have been suggested to yield a lower chance of inducing bacterial resistance than antibiotics, making carbon quantum dots attractive for large scale clinical use.