Online citations, reference lists, and bibliographies.

Quantifying The Unitary Generation Of Coherence From Thermal Quantum Systems

S. Kallush, A. Aroch, R. Kosloff
Published 2019 · Computer Science, Mathematics, Physics

Cite This
Download PDF
Analyze on Scholarcy
Share
The unitary generation of coherence from an incoherent thermal state is investigated. We consider a completely controllable Hamiltonian allowing to generate all possible unitary transformations. Optimizing the unitary control to achieve maximum coherence leads to a micro-canonical energy distribution on the diagonal energy representation. We demonstrate such a control scenario starting from a Hamiltonian utilizing optimal control theory for unitary targets. Generating coherence from an incoherent initial state always costs external work. By constraining the amount of work invested by the control, maximum coherence leads to a canonical energy population distribution. When the optimization procedure constrains the final energy too tightly local suboptimal traps are found. The global optimum is obtained when a small Lagrange multiplier is employed to constrain the final energy. Finally, we explore constraining the generated coherence to be close to the diagonal in the energy representation.
This paper references
10.1007/BF01608390
Expectations and entropy inequalities for finite quantum systems
G. Lindblad (1974)
10.1088/1751-8113/49/14/143001
The role of quantum information in thermodynamics—a topical review
J. Goold (2016)
10.1080/01442350701633300
Quantum control landscapes
R. Chakrabarti (2007)
10.1103/PhysRevA.55.R1565
Kinematical bounds on evolution and optimization of mixed quantum states
M. D. Girardeau (1997)
10.1103/PhysRevLett.105.170402
Generalized clausius inequality for nonequilibrium quantum processes.
Sebastian Deffner (2010)
10.1063/1.468108
IMPULSIVE EXCITATION OF COHERENT VIBRATIONAL MOTION GROUND SURFACE DYNAMICS INDUCED BY INTENSE SHORT PULSES
U. Banin (1994)
10.3390/e15062100
Quantum Thermodynamics: A Dynamical Viewpoint
R. Kosloff (2013)
10.2307/j.ctt1wq8zhp
Mathematical Foundations of Quantum Mechanics
J. V. Neumann (1955)
10.1103/PHYSREVA.72.052337
Landscape for optimal control of quantum-mechanical unitary transformations
H. Rabitz (2005)
10.1103/RevModPhys.89.041003
Colloquium : Quantum coherence as a resource
A. Streltsov (2017)
10.1016/B0-12-348530-4/00250-2
Evaluación de la diversidad taxonómica y funcional de la comunidad microbiana relacionada con el ciclo del nitrógeno en suelos de cultivo de arroz con diferentes manejos del tamo
Carreño Carreño (2020)
10.3390/e18040124
Quantum Heat Machines Equivalence, Work Extraction beyond Markovianity, and Strong Coupling via Heat Exchangers
R. Uzdin (2016)
10.1103/PhysRevA.88.022505
Effects of an exceptional point on the dynamics of a single particle in a time-dependent harmonic trap
Raam Uzdin (2013)
10.1103/REVMODPHYS.75.543
Colloquium: Aligning molecules with strong laser pulses
H. Stapelfeldt (2003)
10.1007/BF01614224
Passive states and KMS states for general quantum systems
W. Pusz (1978)
Quantum information and quantum computation
M. Nielsen (2001)
10.1103/PhysRevLett.116.120404
Operational Resource Theory of Coherence.
A. Winter (2016)
10.1103/PhysRevE.93.052150
Transitions between refrigeration regions in extremely short quantum cycles.
T. Feldmann (2016)
10.1007/BF01651541
Stability and equilibrium states
R. Haag (1974)
10.1103/PhysRevA.68.062308
Optimal control theory for unitary transformations
J. P. Palao (2003)
Purely rotational coherence effect and time-resolved sub-Doppler spectroscopy of large molecules. II. Experimental
J. S. Baskin (1987)
10.1103/PhysRevE.68.016101
Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction.
T. Feldmann (2003)
10.1088/1367-2630/16/1/015008
Quantum control with noisy fields: computational complexity versus sensitivity to noise
S. Kallush (2014)
10.1103/PhysRevA.72.032704
Control of mixed-state quantum systems by a train of short pulses (10 pages)
D. Sugny (2005)
10.3390/e19040136
The Quantum Harmonic Otto Cycle
R. Kosloff (2017)
10.1103/PhysRevLett.113.140401
Quantifying coherence.
T. Baumgratz (2014)
A Mathematical Theory of Communication
J. W. Shin (2006)
10.1103/PhysRevA.93.052335
Energy cost of creating quantum coherence
A. Misra (2016)
10.1103/PhysRevLett.93.140403
The second law, Maxwell's demon, and work derivable from quantum heat engines.
T. D. Kieu (2004)
10.1021/j100277a006
Rephasing of Collisionless Molecular Rotational Coherence in Large Molecules
P. Felker (1986)
10.1007/BF01011769
Thermodynamical proof of the Gibbs formula for elementary quantum systems
A. Lenard (1978)
10.1016/0375-9474(69)90431-x
Principles of statistical mechanics
A. Katz (1967)
Many-Particle Physics; Springer Science & Business Media
G. D. Mahan (2013)
10.1103/PhysRevX.8.021064
Global Passivity in Microscopic Thermodynamics
Raam Uzdin (2018)
10.1103/PhysRevLett.117.103001
Rotational Control of Asymmetric Molecules: Dipole- versus Polarizability-Driven Rotational Dynamics.
Ran Damari (2016)
10.1103/PHYSREVA.97.053405
Optimizing the multicycle subrotational internal cooling of diatomic molecules
A. Aroch (2018)
10.1103/PhysRevLett.113.260601
Irreversible work and inner friction in quantum thermodynamic processes.
F. Plastina (2014)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar