Online citations, reference lists, and bibliographies.
← Back to Search

Epigenetic Patterns And Geographical Parthenogenesis In The Alpine Plant Species Ranunculus Kuepferi (Ranunculaceae)

Christoph C. F. Schinkel, Eleni Syngelaki, Bernhard Kirchheimer, Stefan Dullinger, Simone Klatt, Elvira Hörandl

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Polyploidization and the shift to apomictic reproduction are connected to changes in DNA cytosine-methylation. Cytosine-methylation is further sensitive to environmental conditions. We, therefore, hypothesize that DNA methylation patterns would differentiate within species with geographical parthenogenesis, i.e., when diploid sexual and polyploid apomictic populations exhibit different spatial distributions. On natural populations of the alpine plant Ranunculus kuepferi, we tested differences in methylation patterns across two cytotypes (diploid, tetraploid) and three reproduction modes (sexual, mixed, apomictic), and their correlation to environmental data and geographical distributions. We used methylation-sensitive amplified fragment-length polymorphism (methylation-sensitive AFLPs) and scored three types of epiloci. Methylation patterns differed independently between cytotypes versus modes of reproduction and separated three distinct combined groups (2x sexual + mixed, 4x mixed, and 4x apomictic), with differentiation of 4x apomicts in all epiloci. We found no global spatial autocorrelation, but instead correlations to elevation and temperature gradients in 22 and 36 epiloci, respectively. Results suggest that methylation patterns in R. kuepferi were altered by cold conditions during postglacial recolonization of the Alps, and by the concomitant shift to facultative apomixis, and by polyploidization. Obligate apomictic tetraploids at the highest elevations established a distinct methylation profile. Methylation patterns reflect an ecological gradient rather than the geographical differentiation.