Online citations, reference lists, and bibliographies.
← Back to Search

Use Of Selected Carbon Nanoparticles As Melittin Carriers For MCF-7 And MDA-MB-231 Human Breast Cancer Cells

Karolina Daniluk, Marta Kutwin, Marta Grodzik, Mateusz Wierzbicki, Barbara Strojny, Jarosław Szczepaniak, Jaśmina Bałaban, Malwina Sosnowska, Andre Chwalibog, Ewa Sawosz, Sławomir Jaworski

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Despite advanced techniques in medicine, breast cancer caused the deaths of 627,000 women in 2018. Melittin, the main component of bee venom, has lytic properties for many types of cells, including cancer cells. To increase its toxic effect, carbon nanoparticles, graphene oxide, pristine graphene, and diamond were used as carriers of melittin to breast cancer cells. To date, the effects of carbon nanoparticles as carriers of melittin on cancer cells have not been studied. The present study was carried out on MCF-7 and MDA-MB-231 cell lines. The investigation consisted of structural analysis of complexes using transmission electron microscopy, zeta potential measurements, evaluation of cell morphology, assessment of cell viability and membrane integrity, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. Cell death was examined by flow cytometry and a membrane test for 43 apoptotic proteins. The results indicate that melittin complex with nanographene oxide has a stronger toxic effect on breast cancer cells than melittin alone. Moreover, nanodiamonds can protect cells against the lytic effects of melittin. All complexes reduced, but not completely eliminated the level of necrosis, compared to melittin. Thus, results suggest that the use of carbon nanoparticles as carriers for melittin may find use in medicine in the future.