Online citations, reference lists, and bibliographies.
← Back to Search

Cold Plasma Preparation Of Pd/Graphene Catalyst For Reduction Of P-Nitrophenol

Qian Zhao, Decai Bu, Zhihui Li, Xiuling Zhang, Lanbo Di

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Supported metal nanoparticles with small size and high dispersion can improve the performance of heterogeneous catalysts. To prepare graphene-supported Pd catalysts, graphene and PdCl2 were used as support and Pd precursors, respectively. Pd/G-P and Pd/G-H catalysts were prepared by cold plasma and conventional thermal reduction, respectively, for the catalytic reduction of p-nitrophenol (4-NP). The reaction followed quasi-first-order kinetics, and the apparent rate constant of Pd/G-P and Pd/G-H was 0.0111 and 0.0042 s−1, respectively. The graphene support was exfoliated by thermal reduction and cold plasma, which benefits the 4-NP adsorption. Pd/G-P presented a higher performance because cold plasma promoted the migration of Pd species to the support outer surface. The Pd/C atomic ratio for Pd/G-P and Pd/G-H was 0.014 and 0.010, respectively. In addition, the Pd nanoparticles in Pd/G-P were smaller than those in Pd/G-H, which was beneficial for the catalytic reduction. The Pd/G-P sample presented abundant oxygen-containing functional groups, which anchored the metal nanoparticles and enhanced the metal-support interaction. This was further confirmed by the shift in the binding energy to a high value for Pd3d in Pd/G-P. The cold plasma method operated under atmospheric pressure is effective for the preparation of Pd/G catalysts with enhanced catalytic activity for 4-NP reduction.