Online citations, reference lists, and bibliographies.
← Back to Search

Recent Advances In The Design Of Topical Ophthalmic Delivery Systems In The Treatment Of Ocular Surface Inflammation And Their Biopharmaceutical Evaluation

R. Mazet, J. B. Yaméogo, D. Wouessidjewe, L. Choisnard, A. Géze
Published 2020 · Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
Ocular inflammation is one of the most common symptom of eye disorders and diseases. The therapeutic management of this inflammation must be rapid and effective in order to avoid deleterious effects for the eye and the vision. Steroidal (SAID) and non-steroidal (NSAID) anti-inflammatory drugs and immunosuppressive agents have been shown to be effective in treating inflammation of the ocular surface of the eye by topical administration. However, it is well established that the anatomical and physiological ocular barriers are limiting factors for drug penetration. In addition, such drugs are generally characterized by a very low aqueous solubility, resulting in low bioavailability as only 1% to 5% of the applied drug permeates the cornea. The present review gives an updated insight on the conventional formulations used in the treatment of ocular inflammation, i.e., ointments, eye drops, solutions, suspensions, gels, and emulsions, based on the commercial products available on the US, European, and French markets. Additionally, sophisticated formulations and innovative ocular drug delivery systems will be discussed. Promising results are presented with micro- and nanoparticulated systems, or combined strategies with polymers and colloidal systems, which offer a synergy in bioavailability and sustained release. Finally, different tools allowing the physical characterization of all these delivery systems, as well as in vitro, ex vivo, and in vivo evaluations, will be considered with regards to the safety, the tolerance, and the efficiency of the drug products.
This paper references
10.1016/j.ijpharm.2012.11.002
Dexamethasone eye drops containing γ-cyclodextrin-based nanogels.
Maria D. Moya-Ortega (2013)
10.1016/J.OPHTHA.2006.05.022
Efficacy of topical cyclosporine 0.05% for prevention of cornea transplant rejection episodes.
M. Price (2006)
10.1080/10717544.2018.1458923
Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies
Yinglan Yu (2018)
10.1097/OPX.0b013e3181824dc4
Effect of Viscosity on Tear Drainage and Ocular Residence Time
H. Zhu (2008)
10.1016/j.ejpb.2012.12.010
Polymeric triamcinolone acetonide nanoparticles as a new alternative in the treatment of uveitis: in vitro and in vivo studies.
A. Sabzevari (2013)
10.1016/S0142-9612(02)00080-7
Flurbiprofen-loaded acrylate polymer nanosuspensions for ophthalmic application.
R. Pignatello (2002)
10.1155/2012/789623
Advances in Corticosteroid Therapy for Ocular Inflammation: Loteprednol Etabonate
T. Comstock (2012)
10.1016/S0161-6420(99)00176-1
Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease1
K. Sall (2000)
10.1016/J.EJPB.2004.07.002
Conversion of cyclosporine A prodrugs in human tears vs rabbits tears.
F. Lallemand (2005)
10.1185/10.1185/030079906X115766
Ocular permeation and inhibition of retinal inflammation: an examination of data and expert opinion on the clinical utility of nepafenac.
R. Lindstrom (2006)
10.1038/383837A0
Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression
L. Timmerman (1996)
10.1016/j.colsurfb.2016.08.048
Improving the topical ocular pharmacokinetics of an immunosuppressant agent with mucoadhesive nanoemulsions: Formulation development, in-vitro and in-vivo studies.
S. Akhter (2016)
10.1016/S1461-5347(98)00087-X
RECENT DEVELOPMENTS IN OPHTHALMIC DRUG DELIVERY
Shulin Ding (1998)
10.1021/acs.biomac.5b01526
Fabrication of a Micellar Supramolecular Hydrogel for Ocular Drug Delivery.
Zhaoliang Zhang (2016)
10.1515/ntrev-2016-0004
Topical ocular delivery of a COX-II inhibitor via biodegradable nanoparticles
A. Sharma (2016)
10.1016/J.IJPHARM.2007.03.011
Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs.
M. Kassem (2007)
10.3390/pharmaceutics11090460
Advanced Formulation Approaches for Ocular Drug Delivery: State-Of-The-Art and Recent Patents
E. B. Souto (2019)
10.1016/j.ijbiomac.2016.05.016
The potential application of hyaluronic acid coated chitosan nanoparticles in ocular delivery of dexamethasone.
M. A. Kalam (2016)
10.1016/S0378-5173(98)00381-0
Flurbiprofen-loaded nanospheres: analysis of the matrix structure by thermal methods.
F. Gamisans (1999)
10.1016/j.ijpharm.2013.04.062
Solubility enhancement of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers.
F. Koc (2013)
10.1089/JOP.2007.0039
Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits.
Khosro Adibkia (2007)
10.1016/j.jconrel.2011.04.019
A method for enhancing the ocular penetration of eye drops using nanoparticles of hydrolyzable dye.
Koichi Baba (2011)
10.1016/j.addr.2009.11.026
Chitosan-based nanostructures: a delivery platform for ocular therapeutics.
M. de la Fuente (2010)
10.1039/c9nr00376b
Synergistically dual-functional nano eye-drops for simultaneous anti-inflammatory and anti-oxidative treatment of dry eye disease.
Yu-Jia Li (2019)
10.2147/OPTH.S1067
Topical ophthalmic NSAIDs: a discussion with focus on nepafenac ophthalmic suspension
Bruce I. Gaynes (2008)
10.2165/00003088-199631050-00002
Clinical Pharmacokinetics of Tiaprofenic Acid and its Enantiomers
N. M. Davies (1996)
10.1080/10611860701453125
Piroxicam nanoparticles for ocular delivery: Physicochemical characterization and implementation in endotoxin-induced uveitis
Khosro Adibkia (2007)
10.1016/j.tox.2014.11.003
An overview of current techniques for ocular toxicity testing.
S. Wilson (2015)
10.1211/jpp.59.5.0002
Cyclodextrin microparticles for drug delivery to the posterior segment of the eye: aqueous dexamethasone eye drops
T. Loftsson (2007)
10.1016/S0939-6411(03)00187-5
Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use.
J. Vandervoort (2004)
10.1080/10837450.2018.1486424
Design, characterization, and evaluation of aceclofenac-loaded Eudragit RS 100 nanoparticulate system for ocular delivery
Rajesh S. Katara (2019)
10.1080/10717540701606426
Sustained Ocular Drug Delivery from a Temperature and pH Triggered Novel In Situ Gel System
H. Gupta (2007)
Ocular Inserts: A Novel Controlled Drug Delivery System
K. S. Kumar (2013)
10.1002/jps.22784
Improved and safe transcorneal delivery of flurbiprofen by NLC and NLC-based hydrogels.
E. González-Mira (2012)
10.1016/j.ejpb.2017.02.001
Formulation and ex vivo evaluation of polymeric nanoparticles for controlled delivery of corticosteroids to the skin and the corneal epithelium
Benjamin Balzus (2017)
10.1080/10717544.2016.1223225
Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability
N. Patel (2016)
10.1016/j.ejpb.2015.01.018
Fabrication and characterization of silk fibroin-coated liposomes for ocular drug delivery.
Yixuan Dong (2015)
10.1007/s13346-016-0337-4
Nanogels of methylcellulose hydrophobized with N-tert-butylacrylamide for ocular drug delivery
Marion Jamard (2016)
10.1111/j.2042-7158.2012.01603.x
Synthesis and plasma pharmacokinetics in CD‐1 mice of a 18β‐glycyrrhetinic acid derivative displaying anti‐cancer activity
B. Lallemand (2013)
10.4155/CLI.14.135
Cyclosporine ophthalmic emulsions for the treatment of dry eye: a review of the clinical evidence.
Philip Ames (2015)
10.1016/j.vascn.2010.01.001
Validating and troubleshooting ocular in vitro toxicology tests.
F. Barile (2010)
10.1159/000068563
Topical Nonsteroidal Anti-Inflammatory Therapy in Ophthalmology
R. Schalnus (2003)
10.4103/0975-7406.111824
Nanoparticles laden in situ gel for sustained ocular drug delivery
H. Gupta (2013)
10.1016/1350-9462(96)00014-6
Delivery of drugs to the eye by topical application
Hitoshi Sasaki (1996)
10.1016/j.jcis.2012.01.007
Characterizing zeta potential of functional nanofibers in a microfluidic device.
Daehwan Cho (2012)
10.1016/S0887-2333(00)00065-5
Extent of initial corneal injury as a basis for alternative eye irritation tests.
J. Jester (2001)
Documenton an Integrated Approach on Testing and Assessment (IATA) for Serious Eye Damage and Eye Irritation
Oecd (2017)
10.1111/j.2042-7158.1996.tb03911.x
Improved Ocular Bioavailability of Indomethacin by Novel Ocular Drug Carriers
P. Calvo (1996)
10.1016/j.nano.2009.02.003
Nanomedicines for ocular NSAIDs: safety on drug delivery.
J. Araújo (2009)
10.1016/S0378-5173(97)00083-5
Evaluation of cationic polymer-coated nanocapsules as ocular drug carriers
P. Calvo (1997)
10.2147/OPTH.S12441
Dose uniformity of topical corticosteroid preparations: difluprednate ophthalmic emulsion 0.05% versus branded and generic prednisolone acetate ophthalmic suspension 1%
W. Stringer (2010)
Guideline for the Testing of Chemicals-Acute Eye Irritation/Corrosion
(2012)
10.1016/J.AJPS.2013.07.013
Preparation of bromfenac-loaded liposomes modified with chitosan for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile
Toshimasa Tsukamoto (2013)
10.1007/s13346-019-00650-1
Recent advances in cyclosporine drug delivery: challenges and opportunities
Dhrumi Patel (2019)
10.1016/S0378-5173(00)00508-1
Ketorolac entrapped in polymeric micelles: preparation, characterisation and ocular anti-inflammatory studies.
A. Gupta (2000)
10.1208/s12249-015-0448-0
A Novel Method for Preparing Surface-Modified Fluocinolone Acetonide Loaded PLGA Nanoparticles for Ocular Use: In Vitro and In Vivo Evaluations
A. Salama (2015)
10.1007/s12272-001-1266-6
Chitosan based nanocarriers for indomethacin ocular delivery
A. Badawi (2008)
10.1007/s12325-008-0019-9
Ocular distribution, bactericidal activity and settling characteristics of TobraDex® ST ophthalmic suspension compared with TobraDex® ophthalmic suspension
Stephen V. Scoper (2008)
10.2217/nnm-2017-0318
Nanostructured lipid carriers-based thermosensitive eye drops for enhanced, sustained delivery of dexamethasone.
Zhenjie Mo (2018)
10.1016/S0928-0987(02)00057-X
Eudragit RS100 nanosuspensions for the ophthalmic controlled delivery of ibuprofen.
R. Pignatello (2002)
10.1136/bjo.80.5.480
The emerging roles of topical non-steroidal anti-inflammatory agents in ophthalmology.
P. Koay (1996)
10.1016/j.ijpharm.2016.11.053
Pharmaceutical technology can turn a traditional drug, dexamethasone into a first-line ocular medicine. A global perspective and future trends.
J. Rodríguez Villanueva (2017)
10.1517/13543784.2016.1128893
Moving forward in uveitis therapy: preclinical to phase II clinical trial drug development
Raquel Salazar-Méndez (2016)
10.1016/j.colsurfb.2016.04.054
PEGylated PLGA nanospheres optimized by design of experiments for ocular administration of dexibuprofen-in vitro, ex vivo and in vivo characterization.
E. Sánchez-López (2016)
10.1039/c8nr00058a
A non-invasive nanoparticle mediated delivery of triamcinolone acetonide ameliorates diabetic retinopathy in rats.
Binapani Mahaling (2018)
10.1016/j.colsurfb.2012.10.056
Eudragit RL 100-based nanoparticulate system of aceclofenac for ocular delivery.
Rajesh S. Katara (2013)
10.1016/j.ijpharm.2019.05.018
Cationized hyaluronic acid coated spanlastics for cyclosporine A ocular delivery: Prolonged ocular retention, enhanced corneal permeation and improved tear production.
Yang Liu (2019)
Unleash the power of corticosteroids
R. K. Thomas (2016)
10.1016/j.nano.2008.07.003
Diclofenac-loaded biopolymeric nanosuspensions for ophthalmic application.
Sagar M. Agnihotri (2009)
10.1007/978-3-319-47691-9
Ocular Drug Delivery: Advances, Challenges and Applications
Richard T. Addo (2016)
Formulation Development and Characterization of Naproxen Sodium-Loaded Mucoadhesive Microspheres
S. Kumar (2012)
10.1016/S0006-2952(98)00312-8
Anti-inflammatory mechanism of alminoprofen: action on the phospholipid metabolism pathway.
C. Raguenes-Nicol (1999)
10.1016/j.ijpharm.2018.12.057
The ocular pharmacokinetics and biodistribution of phospho‐sulindac (OXT‐328) formulated in nanoparticles: Enhanced and targeted tissue drug delivery
Ziyi Wen (2019)
10.1016/j.jconrel.2008.12.018
Polymeric nanoparticulate system: a potential approach for ocular drug delivery.
R. C. Nagarwal (2009)
10.1016/j.ijpharm.2010.06.015
Self-assembled liquid crystalline nanoparticles as a novel ophthalmic delivery system for dexamethasone: Improving preocular retention and ocular bioavailability.
L. Gan (2010)
10.1155/2012/604204
Successfully Improving Ocular Drug Delivery Using the Cationic Nanoemulsion, Novasorb
F. Lallemand (2012)
10.2147/IJN.S126199
Corneal permeation properties of a charged lipid nanoparticle carrier containing dexamethasone
Junfeng Ban (2017)
10.2165/00002018-200225040-00002
Topical Nonsteroidal Anti-Inflammatory Drugs for Ophthalmic Use
B. Gaynes (2002)
10.1002/jps.23417
Nanoparticle-based topical ophthalmic formulations for sustained celecoxib release.
M. M. Ibrahim (2013)
10.1023/A:1007001131987
Nepafenac, a Unique Nonsteroidal Prodrug with Potential Utility in the Treatment of Trauma-Induced Ocular Inflammation: II. In Vitro Bioactivation and Permeation of External Ocular Barriers
Tai-Lee Ke (2004)
10.1016/J.ADDR.2006.07.022
Industrial perspective in ocular drug delivery.
Yusuf Ali (2006)
10.1007/S10856-007-3192-5
In vitro biocompatibility of degradable biopolymers in cell line cultures from various ocular tissues: extraction studies
A. Huhtala (2008)
10.1208/s12249-015-0290-4
Development and Evaluation of Diclofenac Sodium Loaded-N-Trimethyl Chitosan Nanoparticles for Ophthalmic Use
Rathapon Asasutjarit (2015)
10.1016/J.IJPHARM.2004.12.015
A novel water-soluble cyclosporine A prodrug: ocular tolerance and in vivo kinetics.
F. Lallemand (2005)
10.1016/j.ejpb.2011.11.017
In vivo characterisation of a novel water-soluble Cyclosporine A prodrug for the treatment of dry eye disease.
M. Rodriguez-Aller (2012)
10.4168/aair.2015.7.4.312
Seven Steps to the Diagnosis of NSAIDs Hypersensitivity: How to Apply a New Classification in Real Practice?
M. Kowalski (2015)
10.1084/JEM.168.5.1649
In situ hybridization for interleukin 2 and interleukin 2 receptor mRNA in T cells activated in the presence or absence of cyclosporin A
A. Granelli-Piperno (1988)
10.3109/08820538.2010.518522
Drug Delivery Options for the Treatment of Ocular Inflammation
A. Lobo (2010)
10.1089/jop.2015.0047
Recent Advances in Topical Ocular Drug Delivery.
V. Yellepeddi (2016)
10.3109/03639045.2016.1141932
Cyclodextrin–poloxamer aggregates as nanocarriers in eye drop formulations: dexamethasone and amphotericin B
P. Jansook (2016)
Guideline for the Testing of Chemicals-Short Time Exposure In VITRO Test Method
(2018)
Calpena Campmany, A.C. Influence of freeze-drying and γ-irradiation in preclinical studies of flurbiprofen polymeric nanoparticles for ocular delivery using d-(+)-trehalose and polyethylene glycol
G R Ramos Yacasi (2016)
10.4155/tde-2017-0088
Recent advances in topical nano drug-delivery systems for the anterior ocular segment.
P. Lakhani (2018)
10.1002/JPS.2600750316
Effect of particle dissolution rate on ocular drug bioavailability.
H. W. Hui (1986)
10.3109/08982104.2014.881850
Preparation, characterization and evaluation of novel elastic nano-sized niosomes (ethoniosomes) for ocular delivery of prednisolone
Passent M E Gaafar (2014)
10.1089/jop.2014.0152
Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application.
S. Patel (2015)
10.1016/j.ijpharm.2008.07.017
A controlled-release ocular delivery system for ibuprofen based on nanostructured lipid carriers.
X. Li (2008)
10.1080/17425247.2019.1597848
Topical application of polymeric nanomicelles in ophthalmology: a review on research efforts for the noninvasive delivery of ocular therapeutics
M. A. Grimaudo (2019)
10.1159/000065608
Enhanced Ocular Anti-Inflammatory Activity of Ibuprofen Carried by an Eudragit RS100® Nanoparticle Suspension
C. Bucolo (2002)
10.3109/03639045.2015.1081236
Formulation and corneal permeation of ketorolac tromethamine-loaded chitosan nanoparticles
Zeinab Fathalla (2016)
10.1016/j.colsurfb.2016.10.032
Penetration of mucoadhesive chitosan-dextran sulfate nanoparticles into the porcine cornea.
Wanachat Chaiyasan (2017)
10.1016/j.ejmech.2015.07.045
Design, characterization and in vitro evaluation of novel shell crosslinked poly(butylene adipate)-co-N-succinyl chitosan nanogels containing loteprednol etabonate: A new system for therapeutic effect enhancement via controlled drug delivery.
Farzaneh Hashemi Nasr (2015)
10.1016/J.EJPB.2007.03.011
Biological conversion of a water-soluble prodrug of cyclosporine A.
F. Lallemand (2007)
10.1021/BM0604000
Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude.
Xioazhong Qu (2006)
10.1016/j.tox.2014.02.012
A nanoparticle formulation reduces the corneal toxicity of indomethacin eye drops and enhances its corneal permeability.
N. Nagai (2014)
10.1016/j.ejpb.2015.01.026
Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration.
G. Abrego (2015)
10.1159/000431197
Nonsteroidal Anti-Inflammatory Drugs in the Treatment of Retinal Diseases.
E. Rodrigues (2016)
[Rationale for using nabumetone and clinical experience].
S. Roth (2000)
10.1211/146080800128735809
Albumin Microspheres for Ocular Delivery of Piroxicam
P. Giunchedi (2000)
10.3390/pharmaceutics10030110
Useful In Vitro Techniques to Evaluate the Mucoadhesive Properties of Hyaluronic Acid-Based Ocular Delivery Systems
Angélica Graça (2018)
METHODS FOR THE STUDY OF IRRITATION AND TOXICITY OF SUBSTANCES APPLIED TOPICALLY TO THE SKIN AND MUCOUS MEMBRANES
J. H. Draize (1944)
10.1016/j.ijpharm.2019.118466
Treatment for chemical burning using liquid crystalline nanoparticles as an ophthalmic delivery system for pirfenidone.
R. S. Silva (2019)
10.1038/s41598-017-13122-8
Non-steroidal anti-inflammatory drug delays corneal wound healing by reducing production of 12-hydroxyheptadecatrienoic acid, a ligand for leukotriene B4 receptor 2
S. Iwamoto (2017)
10.1016/0378-5173(94)90243-7
Hydrocortisone delivery to healthy and inflamed eyes using a micellar polysorbate 80 solution or albumin nanoparticles
A. Zimmer (1994)
10.1016/S0092-8674(00)81573-1
A Calcineurin-Dependent Transcriptional Pathway for Cardiac Hypertrophy
J. Molkentin (1998)
10.2174/1872211308666140713171702
Patent perspectives for corticosteroids based ophthalmic therapeutics.
P. Suresh (2014)
10.1155/2015/432376
Effect of In Vitro Transcorneal Approach of Aceclofenac Eye Drops through Excised Goat, Sheep, and Buffalo Corneas
V. Dave (2015)
10.1088/0957-4484/22/4/045101
Optimizing flurbiprofen-loaded NLC by central composite factorial design for ocular delivery.
E. Gonzalez-Mira (2011)
Ketorolac Tromethamine Loaded Chitosan Nanoparticles as a Nanotherapeutic System for Ocular Diseases Göz Hastaliklari İçin Nanoterapötik Sistem Olarak Ketorolak Trometamin Yüklü Kitosan
F. Yülek (2013)
10.1021/mp3005963
Cyclodextrin-mediated enhancement of riboflavin solubility and corneal permeability.
P. J. Morrison (2013)
10.1080/02713683.2018.1446534
Ocular Permeation and Sustained Anti-inflammatory Activity of Dexamethasone from Kaolin Nanodispersion Hydrogel System
A. Pramanik (2018)
10.4155/TDE.10.40
Recent advances in ophthalmic drug delivery.
U. Kompella (2010)
10.1016/0272-6386(95)90167-1
Role of angiotensin II in the tubulointerstitial fibrosis of obstructive nephropathy.
S. Klahr (1995)
10.1088/1361-6528/aad7da
A potential nanoparticle-loaded in situ gel for enhanced and sustained ophthalmic delivery of dexamethasone.
Yifeng Wen (2018)
10.1159/000489673
Towards an Optimized Use of Ocular Corticosteroids: EURETINA Award Lecture 2017
F. Béhar-Cohen (2018)
10.1016/j.ejps.2018.04.038
Preclinical characterization and clinical evaluation of tacrolimus eye drops
Andrea Luaces-Rodríguez (2018)
10.1016/j.cis.2015.08.002
Mechanistic modeling of ophthalmic drug delivery to the anterior chamber by eye drops and contact lenses.
S. Gause (2016)
10.1016/j.ijpharm.2014.06.007
Enhancement in corneal permeability of riboflavin using calcium sequestering compounds
P. J. Morrison (2014)
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
Stability and in vitro drug release of flurbiprofen-loaded poly-epsilon-caprolactone nanospheres.
F. Lacoulonche (1999)
10.1007/978-981-10-4609-4_2
Topical Corticosteroids: Pharmacology
G. Kwatra (2018)
10.1073/PNAS.81.16.5214
Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription.
M. Kroenke (1984)
10.1167/IOVS.07-0229
Benefits and side effects of different vegetable oil vectors on apoptosis, oxidative stress, and P2X7 cell death receptor activation.
T. Said (2007)
10.1007/s12325-016-0315-8
Impact of the Topical Ophthalmic Corticosteroid Loteprednol Etabonate on Intraocular Pressure
J. Sheppard (2016)
10.1007/S10847-010-9758-8
Drug loading in cyclodextrin polymers: dexamethasone model drug
Maria D. Moya-Ortega (2011)
10.1038/srep11337
Chitosan grafted methoxy poly(ethylene glycol)-poly(ε-caprolactone) nanosuspension for ocular delivery of hydrophobic diclofenac
Shuai Shi (2015)
10.1016/j.drudis.2012.10.005
Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers.
L. Gan (2013)
10.1016/j.ijpharm.2009.06.020
Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery.
N. Li (2009)
10.1016/j.jconrel.2017.07.035
Novel nanosystems for the treatment of ocular inflammation: Current paradigms and future research directions
Lida Lalu (2017)
10.1248/bpb.b17-00137
A Nanoparticle-Based Ophthalmic Formulation of Dexamethasone Enhances Corneal Permeability of the Drug and Prolongs Its Corneal Residence Time.
N. Nagai (2017)
10.1016/J.PHARMA.2008.03.005
Mécanismes moléculaires de l’activité des immunosuppresseurs actuels en transplantation : rôles du pharmacien
A. Hulin (2008)
10.1166/JBN.2013.1711
Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment.
N. Elbialy (2013)
10.1016/j.ijbiomac.2018.01.123
Nepafenac loaded silica nanoparticles dispersed in-situ gel systems: Development and characterization.
Muthuselvam Paulsamy (2018)
10.1016/j.ejpb.2017.03.006
Cyclosporine A delivery to the eye: A comprehensive review of academic and industrial efforts
F. Lallemand (2017)
10.1016/j.colsurfb.2009.03.028
Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres.
J. Araújo (2009)
10.1002/jps.21383
PLGA nanospheres for the ocular delivery of flurbiprofen: drug release and interactions.
E. Vega (2008)
10.3109/10837450.2014.920358
Controlled-release drug delivery system based on fluocinolone acetonide–cyclodextrin inclusion complex incorporated in multivesicular liposomes
S. Y. Vafaei (2015)
10.1039/c2nr30924f
Diclofenac/biodegradable polymer micelles for ocular applications.
X. Li (2012)
10.3109/10837450.2015.1125922
Preparation, characterization and biocompatibility studies of thermoresponsive eyedrops based on the combination of nanostructured lipid carriers (NLC) and the polymer Pluronic F-127 for controlled delivery of ibuprofen
H. Almeida (2017)
10.1016/j.drudis.2016.04.002
Modern approaches to the ocular delivery of cyclosporine A.
P. Agarwal (2016)
10.1016/J.MSEC.2008.08.027
Colloidal systems made of biotransesterified α, β and γ cyclodextrins grafted with C10 alkyl chains
A. Géze (2009)
Industrial perspective in ocular drug
Y. Ali (2006)
A Review on Hydrogels and Its Use in In Situ Ocular Drug Delivery
N. G. Nanjundswami (2009)
10.1016/j.lpm.2012.02.001
[Eye and corticosteroid's use].
A. Fel (2012)
10.1211/0022357055227
Pharmaceutical applications of mucoadhesion for the non‐oral routes
K. Edsman (2005)
10.1208/s12248-008-9024-9
Topical Ocular Delivery of NSAIDs
M. Ahuja (2008)
10.1016/j.ijpharm.2011.03.041
Novel NSAIDs ophthalmic formulation: flurbiprofen axetil emulsion with low irritancy and improved anti-inflammation effect.
J. Shen (2011)
Novel approaches to ocular drug delivery.
J. Davis (2004)
10.1089/jop.2012.0069
Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation.
Ketan Hippalgaonkar (2013)
10.1016/J.LPM.2012.02.001
Indications et complications des corticoïdes en ophtalmologie
A. Fel (2012)
10.3390/pharmaceutics11070321
Penetration Enhancers in Ocular Drug Delivery
Roman V Moiseev (2019)
10.3390/ma12020229
Nepafenac-Loaded Cyclodextrin/Polymer Nanoaggregates: A New Approach to Eye Drop Formulation
B. Lorenzo-Veiga (2019)
10.1016/j.ijpharm.2007.12.007
Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct.
A. Attama (2008)
10.1080/21691401.2016.1203794
PLGA nanoparticles for ocular delivery of loteprednol etabonate: a corneal penetration study
A. K. Sah (2017)
10.1016/S0928-0987(99)00023-8
Pectin microspheres as ophthalmic carriers for piroxicam: evaluation in vitro and in vivo in albino rabbits.
P. Giunchedi (1999)
10.2147/IJN.S173691
Stability, safety, and transcorneal mechanistic studies of ophthalmic lyophilized cyclosporine-loaded polymeric micelles
Y. Shen (2018)
10.1016/j.jcrs.2016.06.006
Cataract surgery and nonsteroidal antiinflammatory drugs
R. S. Hoffman (2016)
10.1124/jpet.119.256933
Ocular Drug Delivery: Present Innovations and Future Challenges
Vrinda Gote (2019)
10.1016/j.ijbiomac.2016.04.070
Development of chitosan nanoparticles coated with hyaluronic acid for topical ocular delivery of dexamethasone.
M. A. Kalam (2016)
10.1016/j.jconrel.2017.01.012
Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies
A. Mandal (2017)
10.1021/acs.chemrestox.6b00226
Intersection of the Roles of Cytochrome P450 Enzymes with Xenobiotic and Endogenous Substrates: Relevance to Toxicity and Drug Interactions.
F. Guengerich (2017)
10.1038/aps.2010.98
Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability
S. Han (2010)
10.1080/17425247.2016.1208649
Advances in the use of prodrugs for drug delivery to the eye
Pranjal S. Taskar (2017)
10.1089/jop.2012.0200
Novel strategies for anterior segment ocular drug delivery.
K. Cholkar (2013)
10.1080/02652040400008457
Long-term shelf stability of amphiphilic β-cyclodextrin nanosphere suspensions monitored by dynamic light scattering and cryo-transmission electron microscopy
A. Géze (2004)
10.1211/0022357023691
Nanosuspensions: a promising drug delivery strategy
V. Patravale (2004)
10.2147/OPTH.S115098
Patient and physician perspectives on the use of cyclosporine ophthalmic emulsion 0.05% for the management of chronic dry eye
T. Deveney (2018)
Non-steroidal anti-inflammatory drug delays corneal wound healing by reducing production of 12-hydroxyheptadecatrienoic acid, a ligand for leukotriene B4 receptor
S. Iwamoto (2017)
10.1177/0300060514567212
Efficacy and Safety of Morniflumate for the Treatment of Symptoms Associated with Soft Tissue Inflammation
G. Cremonesi (2015)
10.1016/J.IJPHARM.2005.05.036
Formulation of an ophthalmic lipid emulsion containing an anti-inflammatory steroidal drug, difluprednate.
M. Yamaguchi (2005)
10.1016/j.jconrel.2013.04.019
In vivo distribution and ex vivo permeation of cyclosporine A prodrug aqueous formulations for ocular application.
M. Rodriguez-Aller (2013)
10.1155/2014/861904
Ophthalmic Drug Dosage Forms: Characterisation and Research Methods
P. Baranowski (2014)
10.1177/1060028015574593
Comparing the Efficacy of Ophthalmic NSAIDs in Common Indications
D. Wilson (2015)
10.1016/j.colsurfb.2018.11.065
In-situ forming gels containing fluorometholone-loaded polymeric nanoparticles for ocular inflammatory conditions.
Roberto González-Pizarro (2019)
10.1016/j.ijpharm.2018.05.050
Development of fluorometholone‐loaded PLGA nanoparticles for treatment of inflammatory disorders of anterior and posterior segments of the eye
Roberto González-Pizarro (2018)
10.4172/JBB.1000318
A Summary of Recent Advances in Ocular Inserts and Implants
Lynda Paul Jervis (2016)
10.1088/1361-6528/aafe36
Evaluation of controlled-release triamcinolone acetonide-loaded mPEG-PLGA nanoparticles in treating experimental autoimmune uveitis.
Dadong Guo (2019)
10.2147/IJN.S195892
Ocular anti-inflammatory activity of prednisolone acetate loaded chitosan-deoxycholate self-assembled nanoparticles
A. Hanafy (2019)
10.1016/j.xphs.2016.09.019
Stability and Ocular Pharmacokinetics of Celecoxib-Loaded Nanoparticles Topical Ophthalmic Formulations.
M. M. Ibrahim (2016)
10.1016/j.ijpharm.2016.04.021
Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery.
N. Morsi (2016)
10.1016/j.ejpb.2015.07.024
Diels-Alder hydrogels with enhanced stability: First step toward controlled release of bevacizumab.
S. Kirchhof (2015)
10.1166/JBN.2013.1594
Nanosponges encapsulating dexamethasone for ocular delivery: formulation design, physicochemical characterization, safety and corneal permeability assessment.
S. Swaminathan (2013)
10.3109/02652048.2013.879930
Prednisolone-loaded nanocapsules as ocular drug delivery system: development, in vitro drug release and eye toxicity
T. Katzer (2014)
10.1016/j.colsurfb.2016.03.061
The potential use of novel chitosan-coated deformable liposomes in an ocular drug delivery system.
Hongdan Chen (2016)
10.1002/j.1460-2075.1996.tb01093.x
HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway.
F. Kiefer (1996)
10.3109/03639045.2015.1066798
Mucoadhesive nano-sized supramolecular assemblies for improved pre-corneal drug residence time
A. Fabiano (2015)
10.1016/j.ijpharm.2010.11.013
Zn-Al-NO(3)-layered double hydroxides with intercalated diclofenac for ocular delivery.
Feng Cao (2011)
10.2174/1874104500802010066
Transcorneal Permeation in a Corneal Device of Non-Steroidal Anti-Inflammatory Drugs in Drug Delivery Systems
R. Valls (2008)
10.1056/NEJMRA050541
Antiinflammatory action of glucocorticoids--new mechanisms for old drugs.
T. Rhen (2005)
Evaluation of a topical cyclosporine A prodrug on corneal graft rejection in rats.
J. Bourges (2006)
10.1081/DDC-100102261
Stability and in vitro drug release of flurbiprofen-loaded poly-ε-caprolactone nanospheres
F. Lacoulonche (1999)
Metods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes
J Draize (1944)
Lipid Derived Autocoids
W. Campbell (1990)
Principles and Procedures for Evaluating the Toxicity of Household Substances
(1977)
10.2165/00003495-200059991-00005
Modalit??s d??utilisation de la nabum??tone et exp??rience clinique
S. Roth (2000)
10.1208/s12249-017-0872-4
In vitro and In vivo Studies on a Novel Bioadhesive Colloidal System: Cationic Liposomes of Ibuprofen
Xiumei Gai (2017)
10.1016/S0181-5512(07)92614-5
Stabilité à - 20 °C des collyres antibiotiques renforcés (amikacine, ceftazidime, vancomycine)
V. Chédru-Legros (2007)
10.1016/j.ijpharm.2014.08.043
Bovine serum albumin-meloxicam nanoaggregates laden contact lenses for ophthalmic drug delivery in treatment of postcataract endophthalmitis.
Wen-ji Zhang (2014)
10.1016/J.EJPS.2005.05.003
A water-soluble prodrug of cyclosporine A for ocular application: a stability study.
F. Lallemand (2005)
Similarities Between Corticosteroids
M. Einhorn (2014)
10.3109/02713683.2012.745879
Mucoadhesive Chitosan-Coated Cationic Microemulsion of Dexamethasone for Ocular Delivery: In Vitro and In Vivo Evaluation
K. Kesavan (2013)
10.1007/s13346-015-0275-6
In vitro and ex vivo corneal penetration and absorption models
Priyanka Agarwal (2015)
INTERNATIONAL CONCIL FOR HARMONISATION OF TECHNICAL REQUIREMENTS FOR PHARMACEUTICALS FOR HUMAN USE
Ich Harmonised (2015)
10.1016/j.pharma.2008.03.005
[Today in molecular mechanisms of immunosuppressive drugs actions: roles of pharmacist].
A. Hulín (2008)
10.7243/2050-120X-2-7
Natural bioadhesive biodegradable nanoparticles-based topical ophthalmic formulations for sustained celecoxib release: in vitro study
M. M. Ibrahim (2013)
10.1016/j.colsurfb.2015.02.007
Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin.
Yuwei Duan (2015)
10.2147/OPTH.S181811
Eye drop emulsion containing 0.1% cyclosporin (1 mg/mL) for the treatment of severe vernal keratoconjunctivitis: an evidence-based review and place in therapy
M. Nebbioso (2019)
10.1016/j.colsurfb.2010.07.047
Preparation and physicochemical characterization of naproxen-PLGA nanoparticles.
Y. Javadzadeh (2010)
10.2147/IJN.S105606
Influence of freeze-drying and γ-irradiation in preclinical studies of flurbiprofen polymeric nanoparticles for ocular delivery using d-(+)-trehalose and polyethylene glycol.
Gladys Rosario Ramos Yacasi (2016)
10.1089/JOP.2015.0047
Recent Advances in Topical Ocular Drug Delivery.
Y. Kashyap (2016)
10.1016/j.addr.2017.04.001
Nanoparticles for drug delivery to the anterior segment of the eye.
D. Janagam (2017)
10.1002/JPS.20685
Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration.
E. Vega (2006)
10.1089/JOP.2014.0152
Development and evaluation of dexamethasone nanomicelles with potential for treating posterior uveitis after topical application.
PatelSoohi (2015)
10.1021/mp900279c
Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy.
H. K. Ibrahim (2010)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar