Online citations, reference lists, and bibliographies.
Referencing for people who value simplicity, privacy, and speed.
Get Citationsy
← Back to Search

Topical Administration Of SLN-Based Gene Therapy For The Treatment Of Corneal Inflammation By De Novo IL-10 Production

Mónica Vicente-Pascual, Itziar Gómez-Aguado, Julen Rodríguez-Castejón, Alicia Rodríguez-Gascón, Elisabetta Muntoni, Luigi Battaglia, Ana del Pozo-Rodríguez, María Ángeles Solinís Aspiazu

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
One of the main challenges in gene therapy is the issue of delivery, and it is especially relevant for the success of gene therapy in the cornea. In the present work, eye drops containing biocompatible non-viral vectors based on solid lipid nanoparticles (SLNs) as gene delivery systems to induce the expression of interleukin 10 (IL-10) were designed to address the treatment of corneal inflammation. Two kinds of SLNs combined with different ligands (protamine, dextran, or hyaluronic acid (HA)) and formulated with polyvinyl alcohol (PVA) were prepared. SLN-based vectors were characterized in terms of size, adhesiveness, viscosity, and pH, before topical administration to wild type and IL-10 knock out (KO) mice. The formulations showed a homogenous particle size below 400 nm and a positive surface charge to favor bioadhesion; the incorporation of PVA improved the corneal penetration. After three days of treatment by topical instillation, SLN-based vectors mainly transfected corneal epithelial cells, HA-formulations being the most effective ones. IL-10 was capable of reaching even the endothelial layer. Corneal sections showed no histological change and formulations seemed to be well tolerated after repeated topical administration. These promising results highlight the possible contribution of non-viral gene augmentation therapy to the future clinical approach of corneal gene therapy.