Online citations, reference lists, and bibliographies.
← Back to Search

Assisting Phytoremediation Of Heavy Metals Using Chemical Amendments

Md. Mahadi Hasan, Md. Nashir Uddin, Iffat Ara-Sharmeen, Hesham F. Alharby, Yahya Alzahrani, Khalid Rehman Hakeem, Li Zhang

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Phytoremediation is one of the safer, economical, and environment-friendly techniques in which plants are used to recover polluted soils, particularly those containing toxic organic substances and heavy metals. However, it is considered as a slow form of remediation, as plants take time to grow and flourish. Various amendments, including the augmentation of certain chemical substances i.e., ethylenediamine tetraacetic acid (EDTA), ethylene glycol tetra acetic acid (EGTA), and sodium dodecyl sulfate (SDS) have been used to induce and enhance the phytoextraction capacity in plants. Several reports show that chemical amendments can improve the metal accumulation in different plant parts without actually affecting the growth of the plant. This raises a question about the amount and mechanisms of chemical amendments that may be needed for potentially good plant growth and metal phytoremediation. This review provides a detailed discussion on the mechanisms undertaken by three important chemical amendments that are widely used in enhancing phytoremediation (i.e., EDTA, EGTA, and SDS) to support plant growth as well as soil phytoremediation. A core part of this review focuses on the recent advances that have been made using chemical amendments in assisting metal phytoremediation.