🙌 New: Upload your document to have your APA citations automatically checked
Online citations, reference lists, and bibliographies.
← Back to Search

MoO3 Nanobelts Embedded Polypyrrole/SIS Copolymer Blends For Improved Electro-Mechanical Dual Applications

Arslan Umer, Faroha Liaqat, Azhar Mahmood

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
This research endeavor aimed to develop thin film blends of polypyrrole (PPy) and poly (styrene-isoprene-styrene) (SIS) with MoO3 as a nanofiller for improved mechanical and electrical properties to widen its scope in the field of mechatronics. This study reports blends of polypyrrole (PPy) and poly (styrene-isoprene-styrene) (SIS) tri-block copolymer showing improved mechanical and electrical attributes while employing MoO3 nanobelts as nanofillers that additionally improves the abovementioned properties in the ensuing nanocomposites. The synthesis of PPy/SIS blends and MoO3/PPy/SIS nanocomposites was well corroborated with XRD, SEM, FTIR, and EDS analysis. Successful blending of PPy was yielded up to 15 w/w% PPy in SIS, as beyond this self-agglomeration of PPy was observed. The results showed a remarkable increase in the conductivity of insulating SIS copolymer from 1.5 × 10−6.1 to 0.343 Scm−1 and tensile strength up to 8.5 MPa with the 15 w/w% PPy/SIS blend. A further enhancement of the properties was recorded by embedding MoO3 nanobelts with varying concentrations of the nanofillers into 15 w/w% PPy/SIS blends. The mechanical strength of the polymeric nanocomposites was enhanced up to 11.4 MPa with an increase in conductivity up to 1.51 Scm−1 for 3 w/w% MoO3/PPy-SIS blends. The resultant product exhibited good potential for electro-mechanical dual applications.