Online citations, reference lists, and bibliographies.
← Back to Search

Group Field Theory And Its Cosmology In A Matter Reference Frame

Steffen Gielen
Published 2018 · Physics

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
While the equations of general relativity take the same form in any coordinate system, choosing a suitable set of coordinates is essential in any practical application. This poses a challenge in background-independent quantum gravity, where coordinates are not a priori available and need to be reconstructed from physical degrees of freedom. We review the general idea of coupling free scalar fields to gravity and using these scalars as a “matter reference frame”. The resulting coordinate system is harmonic, i.e., it satisfies the harmonic (de Donder) gauge. We then show how to introduce such matter reference frames in the group field theory approach to quantum gravity, where spacetime is emergent from a “condensate” of fundamental quantum degrees of freedom of geometry, and how to use matter coordinates to extract physics. We review recent results in homogeneous and inhomogeneous cosmology, and give a new application to the case of spherical symmetry. We find tentative evidence that spherically-symmetric group field theory condensates defined in this setting can reproduce the near-horizon geometry of a Schwarzschild black hole.
This paper references
10.1007/BF02392131
Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires
Y. Fourès-Bruhat (1952)
Sur les systèmes de coordonnées privilégiés dans la théorie de gravitation d’Einstein
V. Fock (1956)
; ISBN 978 - 008 - 010061 - 6 . [ 5 ] V . Fock , Sur les systèmes de coordonnées privilégiés dans la théorie de gravitation d ’ Einstein
I. Rodnianski (1956)
10.1088/0031-9112/11/8/004
The Theory of Space, Time and Gravitation
G. Wyllie (1960)
In Gravitation: an introduction to current research
J. Ehlers (1962)
10.1063/1.3051237
The Theory of Space, Time and Gravitation
V. Fock (1964)
10.1103/PHYSREVD.11.768
Quantization of a Friedmann universe filled with a scalar field
W. Blyth (1975)
Geometrodynamics Regained
S. A. Hojman (1976)
10.1103/PHYSREVD.22.1882
Gauge Invariant Cosmological Perturbations
J. M. Bardeen (1980)
Quantum Fluctuations and a Nonsingular Universe
V. Mukhanov (1981)
10.1006/aphy.1996.0007
Entanglement entropy of nontrivial states
E. Benedict (1995)
10.1103/PhysRevD.51.5600
Dust as a standard of space and time in canonical quantum gravity.
Brown (1995)
10.1016/0370-2693(96)00532-1
Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity
T. Thiemann (1996)
Is Quantization Geometry
J. Klauder (1996)
10.1016/S0550-3213(00)00005-5
Barrett-Crane model from a Boulatov-Ooguri field theory over a homogeneous space
R. Pietri (1999)
10.1088/0264-9381/18/1/308
Spacetime as a Feynman diagram: the connection formulation
M. Reisenberger (2001)
10.1103/PhysRevLett.95.121101
Evolution of binary black-hole spacetimes.
F. Pretorius (2005)
10.1088/0264-9381/22/20/B02
Quantum Gravity (Cambridge Monographs on Mathematical Physics)
C. Kiefer (2005)
10.1007/s00220-004-1281-6
Global Existence for the Einstein Vacuum Equations in Wave Coordinates
H. Lindblad (2005)
10.1103/PhysRevD.74.064018
Observables in effective gravity
S. Giddings (2006)
Quantum Gravity (Cambridge Monographs on
C. Rovelli (2007)
10.1166/ASL.2009.1022
Diffeomorphism symmetry in quantum gravity models
B. Dittrich (2008)
10.1007/s10773-011-0782-2
Radiative Corrections in the Boulatov-Ooguri Tensor Model: The 2-Point Function
Joseph Ben Geloun (2011)
10.1088/0264-9381/28/21/213001
Loop Quantum Cosmology: A Status Report
A. Ashtekar (2011)
10.22323/1.140.0005
Group field theories
T. Krajewski (2011)
10.1017/CBO9780511920998.012
The microscopic dynamics of quantum space as a group field theory
D. Oriti (2011)
10.1088/1742-6596/360/1/012002
Ten questions on Group Field Theory (and their tentative answers)
A. Baratin (2012)
10.1088/0264-9381/32/13/135015
Scalar Material Reference Systems and Loop Quantum Gravity
K. Giesel (2012)
10.1103/PhysRevD.88.083509
Nonperturbative analysis of the evolution of cosmological perturbations through a nonsingular bounce
BingKan Xue (2013)
10.1103/PhysRevD.88.044028
Constraint algebra in loop quantum gravity reloaded. I. Toy model of a $U(1)^3$ gauge theory
Adam Henderson (2013)
10.1007/JHEP06(2014)013
Homogeneous cosmologies as group field theory condensates
Steffen Gielen (2013)
10.1103/PhysRevD.87.044039
Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity
Casey Tomlin (2013)
10.1088/0264-9381/31/9/095009
Quantum black holes in loop quantum gravity
R. Gambini (2014)
10.1007/s00220-014-1928-x
Renormalization of a SU(2) Tensorial Group Field Theory in Three Dimensions
Sylvain Carrozza (2014)
10.1142/9789813220003_0006
The continuum limit of loop quantum gravity - a framework for solving the theory
B. Dittrich (2014)
10.1142/9789813220003_0005
Group Field Theory and Loop Quantum Gravity
D. Oriti (2014)
Functional Renormalisation Group analysis of a Tensorial Group Field Theory on R 3
J. B. Geloun (2015)
10.1088/0264-9381/32/23/235016
Generalized quantum gravity condensates for homogeneous geometries and cosmology
D. Oriti (2015)
10.1007/JHEP08(2015)010
Identifying cosmological perturbations in group field theory condensates
Steffen Gielen (2015)
Functional Renormalization Group analysis of a Tensorial
J. Ben Geloun (2015)
10.1088/0264-9381/33/22/224001
Emergent Friedmann dynamics with a quantum bounce from quantum gravity condensates
D. Oriti (2016)
10.1088/0264-9381/33/22/224002
Emergence of a Low Spin Phase in Group Field Theory Condensates
Steffen Gielen (2016)
10.1103/PhysRevLett.116.211301
Horizon Entropy from Quantum Gravity Condensates.
D. Oriti (2016)
10.3842/SIGMA.2016.082
Quantum Cosmology from Group Field Theory Condensates: a Review
Steffen Gielen (2016)
10.1088/1361-6382/aa549a
Bouncing cosmologies from quantum gravity condensates
D. Oriti (2016)
Theory of Space
P. Singleton (2016)
10.1103/PhysRevD.94.064051
Cosmological implications of interacting Group Field Theory models: cyclic Universe and accelerated expansion
M. Cesare (2016)
10.1007/s10714-016-2030-9
A note on entanglement entropy, coherent states and gravity
M. Varadarajan (2016)
10.1088/1361-6382/AB26F4
Reduced Loop Quantization with four Klein-Gordon Scalar Fields as Reference Matter
K. Giesel (2016)
Functional renormalization group analysis of tensorial group field theories on
J. Ben Geloun (2016)
Functional Renormalization Group analysis of a Tensorial Group Field Theory on R3
J. Ben Geloun (2016)
Functional renormalization group analysis of tensorial group field theories on R d
J. Ben Geloun (2016)
10.1103/PhysRevD.96.044019
On the local well-posedness of Lovelock and Horndeski theories
Giuseppe Papallo (2017)
10.1088/1361-6382/aa85d2
Group field theory for quantum gravity minimally coupled to a scalar field
Y. Li (2017)
10.1142/10445
Loop Quantum Gravity: The First 30 Years
A. Ashtekar (2017)
10.1016/j.crhy.2017.02.003
The universe as a quantum gravity condensate
D. Oriti (2017)
10.1088/1361-6382/aaba11
Cosmological evolution as squeezing: a toy model for group field cosmology
Eugene Adjei (2017)
10.1088/1361-6382/aa986a
Dynamics of anisotropies close to a cosmological bounce in quantum gravity
M. Cesare (2017)
10.1103/PhysRevD.98.106019
Cosmological perturbations from full quantum gravity
Steffen Gielen (2018)
10.1103/PhysRevLett.121.241301
Quantum Transfiguration of Kruskal Black Holes.
A. Ashtekar (2018)
10.1103/PhysRevD.98.126006
Phase transitions in group field theory: The Landau perspective
A. G. A. Pithis (2018)
10.1103/PhysRevD.98.066011
The separate universe framework in group field theory condensate cosmology
F. Gerhardt (2018)
10.1103/PhysRevD.98.046015
Effective line elements and black-hole models in canonical loop quantum gravity
M. Bojowald (2018)
10.1103/PhysRevD.98.126003
Quantum extension of the Kruskal spacetime
A. Ashtekar (2018)
S
M. Bojowald (2018)
Functional renormalization group analysis of tensorial group field theories on R d
R. Martini J. Ben Geloun



This paper is referenced by
10.1103/PHYSREVD.103.086011
Hamiltonian group field theory with multiple scalar matter fields
Steffen Gielen (2021)
10.1103/PhysRevD.101.064014
Renormalization group flow of coupled tensorial group field theories: Towards the Ising model on random lattices
Vincent Lahoche (2020)
10.1016/J.PHYSLETB.2021.136215
(No) phase transition in tensorial group field theory
A. G. A. Pithis (2020)
Cosmological implications of the hydrodynamical phase of group field theory
L. Gabbanelli (2020)
No) phase transition in tensorial field theory
A. G. A. Pithis (2020)
10.1007/jhep12(2020)159
Phase transitions in TGFT: functional renormalization group in the cyclic-melonic potential approximation and equivalence to O(N) models
A. G. A. Pithis (2020)
10.1088/1361-6382/abf627
Dynamical diffeomorphisms
Renata Ferrero (2020)
10.3390/universe6120232
Beyond General Relativity: Models for Quantum Gravity, Loop Quantum Cosmology and Black Holes
N. Mavromatos (2020)
10.1103/PHYSREVD.103.085006
Large- d behavior of the Feynman amplitudes for a just-renormalizable tensorial group field theory
Vincent Lahoche (2019)
Towards a Cosmological GFT Condensate Scenario : Gauge-Invariant Perturbations 16 IV
Steffen Gielen (2019)
10.1103/PhysRevD.99.063505
Limiting curvature mimetic gravity for group field theory condensates
M. Cesare (2019)
10.3390/universe5060147
Group field theory condensate cosmology: An appetizer
A. G. A. Pithis (2019)
10.1088/1361-6382/AB8F67
Generalised effective cosmology from group field theory
Steffen Gielen (2019)
10.3390/universe5050107
Reconstruction of Mimetic Gravity in a Non-Singular Bouncing Universe from Quantum Gravity
M. Cesare (2019)
N ov 2 01 8 Cosmological perturbations from full quantum gravity
Steffen Gielen (2018)
10.1103/PhysRevD.98.106019
Cosmological perturbations from full quantum gravity
Steffen Gielen (2018)
10.1088/1475-7516/2019/02/013
Inhomogeneous universe from group field theory condensate
Steffen Gielen (2018)
10.3390/universe5050116
Switching internal times and a new perspective on the 'wave function of the universe'
P. Höhn (2018)
Semantic Scholar Logo Some data provided by SemanticScholar