Online citations, reference lists, and bibliographies.
← Back to Search

Cocktail Anti-Tick Vaccines: The Unforeseen Constraints And Approaches Toward Enhanced Efficacies

Charles Ndawula, Ala E. Tabor

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
Ticks are second to mosquitoes as vectors of disease. Ticks affect livestock industries in Asia, Africa and Australia at ~$1.13 billion USD per annum. For instance, 80% of the global cattle population is at risk of infestation by the Rhipicephalus microplus species-complex, which in 2016 was estimated to cause $22–30 billion USD annual losses. Although the management of tick populations mainly relies on the application of acaricides, this raises concerns due to tick resistance and accumulation of chemical residues in milk, meat, and the environment. To counteract acaricide-resistant tick populations, immunological tick control is regarded among the most promising sustainable strategies. Indeed, immense efforts have been devoted toward identifying tick vaccine antigens. Until now, Bm86-based vaccines have been the most effective under field conditions, but they have shown mixed success worldwide. Currently, of the two Bm86 vaccines commercialized in the 1990s (GavacTM in Cuba and TickGARDPLUSTM in Australia), only GavacTM is available. There is thus growing consensus that combining antigens could broaden the protection range and enhance the efficacies of tick vaccines. Yet, the anticipated outcomes have not been achieved under field conditions. Therefore, this review demystifies the potential limitations and proposes ways of sustaining enhanced cocktail tick vaccine efficacy.