Online citations, reference lists, and bibliographies.
← Back to Search

Ultrastructure Of Autophagy In Plant Cells

W. G. van Doorn, A. Papini
Published 2013 · Biology, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Just as with yeasts and animal cells, plant cells show several types of autophagy. Microautophagy is the uptake of cellular constituents by the vacuolar membrane. Although microautophagy seems frequent in plants it is not yet fully proven to occur. Macroautophagy occurs farther away from the vacuole. In plants it is performed by autolysosomes, which are considerably different from the autophagosomes found in yeasts and animal cells, as in plants these organelles contain hydrolases from the onset of their formation. Another type of autophagy in plant cells (called mega-autophagy or mega-autolysis) is the massive degradation of the cell at the end of one type of programmed cell death (PCD). Furthermore, evidence has been found for autophagy during degradation of specific proteins, and during the internal degeneration of chloroplasts. This paper gives a brief overview of the present knowledge on the ultrastructure of autophagic processes in plants.
This paper references
10.1104/PP.69.1.98
Vacuolar localization of proteases and degradation of chloroplasts in mesophyll protoplasts from senescing primary wheat leaves.
V. A. Wittenbach (1982)
10.1016/J.PBI.2005.05.016
Vacuolar processing enzyme: an executor of plant cell death.
I. Hara-Nishimura (2005)
10.1007/s00709-010-0229-2
Laticiferous canal formation in fruits of Decaisnea fargesii: a programmed cell death process?
Ya-fu Zhou (2010)
10.1105/tpc.110.082156
Delivery of Prolamins to the Protein Storage Vacuole in Maize Aleurone Cells[W]
F. Reyes (2011)
10.1016/j.semcdb.2010.02.005
Chaperone-mediated autophagy: molecular mechanisms and physiological relevance.
Samantha J. Orenstein (2010)
10.5511/PLANTBIOTECHNOLOGY.18.215
Novel Evaluation Method of Flower Senescence in Freesia (Freesia hybrida) Based on Apoptosis as an Indicator
Tetsuya Yamada (2001)
10.1016/j.pbi.2009.09.012
Transport vesicle formation in plant cells.
Inhwan Hwang (2009)
10.1007/BF01283002
Programmed-cell-death events during tapetum development of angiosperms
A. Papini (2005)
substrate and a functional hybrid of the mammalian autophagic adapters NBR 1 and p 62 / SQSTM 1
A Honig (2011)
10.1104/pp.108.122770
Mobilization of Rubisco and Stroma-Localized Fluorescent Proteins of Chloroplasts to the Vacuole by an ATG Gene-Dependent Autophagic Process1[W][OA]
H. Ishida (2008)
10.4161/auto.5.7.9290
Autophagy is required for tolerance of drought and salt stress in plants
Yimo Liu (2009)
Fine structure of protein - storing plastids in bean root tips
JI Iwata (1967)
10.1007/BF01287298
Protein crystalloids in the stroma of bean plastids
M. Wrischer (2005)
10.1139/B65-084
FINE STRUCTURE IN DETACHED, SENESCING WHEAT LEAVES
M. Shaw (1965)
10.4161/auto.8901
Autophagic degradation of nuclear components in mammalian cells
Young-Eun Park (2009)
10.1007/s00418-009-0564-6
Degradation of excess peroxisomes in mammalian liver cells by autophagy and other mechanisms
S. Yokota (2009)
10.1104/pp.107.108985
Newly Formed Vacuoles in Root Meristems of Barley and Pea Seedlings Have Characteristics of Both Protein Storage and Lytic Vacuoles1[W][OA]
A. Olbrich (2007)
10.1111/j.1365-313X.2010.04315.x
The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis.
S. Kwon (2010)
10.1104/pp.110.170159
Protein Storage Vacuoles Are Transformed into Lytic Vacuoles in Root Meristematic Cells of Germinating Seedlings by Multiple, Cell Type-Specific Mechanisms1[W]
Huiqiong Zheng (2011)
10.1104/pp.108.130013
Autophagy Plays a Role in Chloroplast Degradation during Senescence in Individually Darkened Leaves1[W][OA]
S. Wada (2008)
10.1093/OXFORDJOURNALS.AOB.A088341
Ultrastructural changes in the petals of senescing flowers of Dianthus caryophyllus L.
M. Smith (1992)
10.1086/337388
The Ontogeny of Rubber Formation in Guayule, Parthenium argentatum Gray
R. Backhaus (1983)
Origine golgienne et lytique des vacuoles dans les cellules méristématiques des racines d’orge (Hordeum sativum)
R. Buvat (1977)
10.1371/journal.pone.0015650
Macroautophagy-Mediated Degradation of Whole Nuclei in the Filamentous Fungus Aspergillus oryzae
Jun-ya Shoji (2010)
10.1074/jbc.M512283200
Excess Peroxisomes Are Degraded by Autophagic Machinery in Mammals*
J. Iwata (2006)
10.1007/BF01306604
Degradation of ribulose-bisphosphate carboxylase by vacuolar enzymes of senescing French bean leaves: Immunocytochemical and ultrastructural observations
T. Minamikawa (2005)
Participation des structures golgiennes à la formation des vacuoles autolytiques et à leur approvisionnement enzymatique, dans les cellules du méristème radiculaire de la courge
C Coulomb (1973)
death during the plant innate immune response
Y Moriyasu (2005)
10.1016/j.mce.2010.02.028
Ca2+-PKC-caspase 3-like protease pathway mediates DNA and nuclear fragmentation in ecdysteroid-induced programmed cell death
M. Iga (2010)
10.1146/ANNUREV.ARPLANT.47.1.299
XYLOGENESIS: INITIATION, PROGRESSION, AND CELL DEATH.
H. Fukuda (1996)
10.1111/j.1365-313X.2008.03585.x
'Senescence-associated vacuoles' are involved in the degradation of chloroplast proteins in tobacco leaves.
D. Martínez (2008)
10.4161/auto.5056
Arabidopsis ATG6 is required to limit the pathogen-associated cell death response
S. Patel (2008)
10.1007/s004250050307
Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles
N. Inada (1998)
10.1104/pp.106.092106
Degradation of Oxidized Proteins by Autophagy during Oxidative Stress in Arabidopsis1[W][OA]
Y. Xiong (2006)
10.1139/B70-282
Degeneration of leaf cells resulting from starvation after excision. II. Correlation with water movement and effect on virus synthesis
H. Ragetli (1970)
10.1016/J.TCB.2005.06.006
The endocytic network in plants.
J. Šamaj (2005)
10.1105/tpc.110.081570
The Arabidopsis Multistress Regulator TSPO Is a Heme Binding Membrane Protein and a Potential Scavenger of Porphyrins via an Autophagy-Dependent Degradation Mechanism[W][OA]
Celine Vanhee (2011)
10.1016/j.cell.2005.03.007
Autophagy Regulates Programmed Cell Death during the Plant Innate Immune Response
Y. Liu (2005)
Mise en évidence de systèmes à fonctions autophagiques dans les méristèmes radiculaires de la courge (Cucurbita pepo)
C. Coulomb (1968)
10.1007/s00709-010-0105-0
Do mitochondria in Dendrobium petal mesophyll cells form vacuole-like vesicles?
Kanjana Kirasak (2010)
10.1093/PCP/PCG118
Exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts by specific bodies in naturally senescing leaves of wheat.
A. Chiba (2003)
10.1002/J.1537-2197.1980.TB07749.X
ULTRASTRUCTURE OF DEVELOPING AND MATURE NONARTICULATED LATICIFERS IN THE MILKWEED ASCLEPIAS SYRIACA L. (ASCLEPIADACEAE)
K. Wilson (1980)
10.1016/S0168-9452(02)00403-X
Suppressive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus
T. Yamada (2003)
10.1016/S0044-328X(77)80263-8
«Plastolysomes» — Plastids Involved in the Autolysis of the Embryo-Suspensor in Phaseolus
W. Nagl (1977)
Origine et fonctions des phytolysosomes dans le méristème radiculaire de la courge
PJ Coulomb (1972)
10.1073/PNAS.75.2.852
Cytochemical studies on GERL, provacuoles, and vacuoles in root meristematic cells of Euphorbia.
F. Marty (1978)
10.1093/AOB/MCM002
Ultrastructural evidence for a dual function of the phloem and programmed cell death in the floral nectary of Digitalis purpurea.
K. Gaffal (2007)
10.1016/j.devcel.2012.05.005
Developmentally programmed nuclear destruction during yeast gametogenesis.
Michael D. Eastwood (2012)
10.4161/auto.2092
Autophagy in Development and Stress Responses of Plants
D. Bassham (2006)
10.1093/pcp/pcs099
Beginning to understand autophagy, an intracellular self-degradation system in plants.
K. Yoshimoto (2012)
10.1002/J.1537-2197.1971.TB09960.X
AN ULTRASTRUCTURAL STUDY OF CHLOROPLAST STRUCTURE AND DEDIFFERENTIATION IN TISSUE CULTURES OF STREPTANTHUS TORTUOSUS (CRUCIFERAE)
R. Sjolund (1971)
10.1093/JXB/ERR196
Classes of programmed cell death in plants, compared to those in animals
W. Doorn (2011)
10.1046/J.0960-7412.2001.01189.X
A complex and mobile structure forms a distinct subregion within the continuous vacuolar membrane in young cotyledons of Arabidopsis.
C. Saito (2002)
10.1042/BC20040516
Starvation‐induced expression of autophagy‐related genes in Arabidopsis
T. Rose (2006)
10.1093/JXB/22.4.759
Function of Lysosomes and Lysosomal Enzymes in the Senescing Corolla of the Morning Glory (Ipomoea purpurea)
P. Matile (1971)
10.1093/OXFORDJOURNALS.PCP.A029632
Mass Exodus from Senescing Soybean Chioroplasts
J. Guiamet (1999)
10.1155/2012/431684
The Many Faces of Mitochondrial Autophagy: Making Sense of Contrasting Observations in Recent Research
Alexander I. May (2012)
10.1083/JCB.133.6.1251
Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates
S. Aubert (1996)
Processus de dégénérescence cytoplasmique partielle dans les cellules de jeunes raciness de Cucurbita pepo
C Coulomb (1968)
10.1007/s00018-011-0865-5
Microautophagy: lesser-known self-eating
Wen-wen Li (2011)
10.1093/PCP/PCH031
3-methyladenine inhibits autophagy in tobacco culture cells under sucrose starvation conditions.
Chihiro Takatsuka (2004)
10.1083/JCB.119.5.1117
Evidence for a novel route of wheat storage proteins to vacuoles
H. Levanony (1992)
Role du système membranaire vacuolaire dans la différenciation des latifères d’Euphorbia characias
F. Marty (1970)
Mise en évidence de structures analogues aux lysosomes dans le méristème radiculaires de la courge (Cucurbita pepo L., Cucurbitaceae)
P. Coulomb (1969)
10.1080/00087114.2010.10589727
Ultrastructural aspects of the embryo and different endosperm compartments, in Eruca sativa Hill cv. Nemat (Brassicaceae) during Heart and Torpedo stages
P. Alessio (2010)
10.1155/2012/512721
Pexophagy: The Selective Degradation of Peroxisomes
A. Till (2012)
10.4161/AUTO.19496
Guidelines for the use and interpretation of assays for monitoring autophagy
D. Klionsky (2012)
10.1105/tpc.111.093112
A New Type of Compartment, Defined by Plant-Specific Atg8-Interacting Proteins, Is Induced upon Exposure of Arabidopsis Plants to Carbon Starvation[C][W]
A. Honig (2012)
10.1093/PCP/PCL031
AtATG genes, homologs of yeast autophagy genes, are involved in constitutive autophagy in Arabidopsis root tip cells.
Y. Inoue (2006)
10.1007/BF00571168
Acid phosphatase activity in plastids (plastolysomes) of senescing embryo-suspensor cells
P. -. Gärtner (2004)
10.1105/tpc.112.096586
Plant Peroxisomes: Biogenesis and Function
J. Hu (2012)
10.1080/01926230701320337
Apoptosis: A Review of Programmed Cell Death
S. Elmore (2007)
10.1093/jxb/err438
Xylem cell death: emerging understanding of regulation and function.
Benjamin Bollhöner (2012)
10.1016/j.febslet.2010.01.019
Molecular mechanism and physiological role of pexophagy
Ravi Manjithaya (2010)
10.1146/ANNUREV.ARPLANT.57.032905.105212
Chlorophyll degradation during senescence.
S. Hörtensteiner (2006)
Diversité des corps multivesiculaires et notion d’hétérophagie dans le méristème radiculaire de scorsonère (Scorzonera hispanica)
C. Coulomb (1973)
Mise en evidence d’un appareil provacuolaire et de son role dans l’autophagy cellulaire et l’origine des vacuoles
F. Marty (1973)
10.1139/B70-281
Degeneration of leaf cells resulting from starvation after excision. I. Electron microscopic observations
H. Ragetli (1970)
10.1007/s00418-008-0396-9
The peroxisome: still a mysterious organelle
M. Schrader (2008)
10.1093/jxb/err196
Classes of programmed cell death in plants, compared to those in animals.
W. G. van Doorn (2011)
10.1016/j.plaphy.2012.02.013
Oxidative stress-induced autophagy in plants: the role of mitochondria.
F. Minibayeva (2012)
10.1016/J.TPLANTS.2005.01.006
Many ways to exit? Cell death categories in plants.
W. G. van Doorn (2005)
10.1023/B:PLAN.0000023670.61059.1d
Gene expression during anthesis and senescence in Iris flowers
W. G. van Doorn (2004)
10.1073/PNAS.77.1.428
Protein bodies of mung bean cotyledons as autophagic organelles.
W. van der Wilden (1980)
10.1093/JXB/ERL100
DNA degradation and nuclear degeneration during programmed cell death in petals of Antirrhinum, Argyranthemum, and Petunia.
Tetsuya Yamada (2006)
10.4161/auto.7.6.15099
Do plastids in Dendrobium cv. Lucky Duan petals function similar to autophagosomes and autolysosomes?
W. G. van Doorn (2011)
10.4161/auto.7.9.16389
Plant NBR1 is a selective autophagy substrate and a functional hybrid of the mammalian autophagic adapters NBR1 and p62/SQSTM1
Steingrim Svenning (2011)
10.1093/JXB/ERI276
The autophagy-associated Atg8 gene family operates both under favourable growth conditions and under starvation stresses in Arabidopsis plants.
S. Sláviková (2005)
10.1016/S0065-2296(10)52011-1
Chapter 11 Glutaredoxins in Development and Stress Responses of Plants
S. Li (2009)
Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles: Investigations by fluorescence microscopy and electron microscopy
N. Inada (1998)
10.1111/j.1365-3040.2012.02516.x
Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts into cytoplasm in leaves of rice.
K. Yamane (2012)
Zur Entwicklung der Vacuole in Testa-Zellen des Leinsamens
F. Amelunxen (1984)
10.1146/annurev-arplant-042811-105441
Autophagy: pathways for self-eating in plant cells.
Yimo Liu (2012)
Protein storage vacuoles form de novo during pea cotyledon development.
B. Hoh (1995)
10.1111/J.1365-313X.2005.02346.X
Senescence-associated vacuoles with intense proteolytic activity develop in leaves of Arabidopsis and soybean.
M. Otegui (2005)
10.1007/s10059-009-0006-2
OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice
J. Shin (2009)
10.1093/mp/ssr045
Localization of the Arabidopsis senescence- and cell death-associated BFN1 nuclease: from the ER to fragmented nuclei.
Sarit Farage-Barhom (2011)
10.1016/J.PBI.2005.01.013
Autophagic recycling: lessons from yeast help define the process in plants.
Allison R Thompson (2005)
10.1111/j.1438-8677.2009.00206.x
Dismantling of Arabidopsis thaliana mesophyll cell chloroplasts during natural leaf senescence.
I. M. Evans (2010)
10.4161/auto.3600
Autophagy and Cell-Death Proteases in Plants: Two Wheels of a Funeral Cart
P. Bozhkov (2007)
10.1007/s00425-006-0307-z
Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)
Tetsuya Yamada (2006)
10.1016/j.febslet.2010.02.013
The Cvt pathway as a model for selective autophagy
Melinda A. Lynch-Day (2010)
10.1038/cdd.2011.70
The role of vacuole in plant cell death
I. Hara-Nishimura (2011)
10.1007/BF00390886
The ultrastructural development of spherosomes and oil bodies in the developing embyro of Crambe abyssinica
C. Smith (2004)
10.1038/emboj.2012.151
Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae
A. Motley (2012)
10.1093/JXB/ERM089
Protein dynamics and proteolysis in plant vacuoles.
K. Müntz (2007)
10.1093/PCP/PCJ013
Autophagy is not a main contributor to the degradation of phospholipids in tobacco cells cultured under sucrose starvation conditions.
Y. Inoue (2006)
Vesicules autophagiques des latifères différenciés d’Euphorbia characias L
F. Marty (1971)
10.4161/auto.3586
Nucleus-Vacuole Junctions and Piecemeal Microautophagy of the Nucleus in S. cerevisiae
E. Kvam (2007)
10.1006/ANBO.2000.1317
Ultrastructure of Early Secondary Embryogenesis by Multicellular and Unicellular Pathways in Cork Oak ( Quercus suber L.).
P. Puigderrajols (2001)
10.3929/ETHZ-A-000085638
Zum Stoffwechsel der aufblühenden und welkenden Korolle der Prunkwinde Ipomoea purpurea
F. Winkenbach (1970)
10.1002/bies.20761
Reconstructing evolution: Gene transfer from plastids to the nucleus
R. Bock (2008)
Uptake and apparent digestion of cytoplasmic organelles by protein bodies (protein storage vacuoles) in mung bean cotyledons.
E. Herman (1981)
10.1083/JCB.46.3.435
CYTOCHEMICAL AND DEVELOPMENTAL CHANGES IN MICROBODIES (GLYOXYSOMES) AND RELATED ORGANELLES OF CASTOR BEAN ENDOSPERM
E. Vigil (1970)
10.1083/JCB.33.1.143
FINE STRUCTURE OF PROTEIN-STORING PLASTIDS IN BEAN ROOT TIPS
E. Newcomb (1967)
10.1534/genetics.107.086199
The ATG12-Conjugating Enzyme ATG10 Is Essential for Autophagic Vesicle Formation in Arabidopsis thaliana
Allison R. Phillips (2008)
Nucleus - vacuole junctions and piecemeal
E Kvam
10.4161/auto.2.2.2366
Protein Aggregates are Transported to Vacuoles by Macroautophagic Mechanism in Nutrient-Starved Plant Cells
K. Toyooka (2006)
10.1007/s00709-010-0176-y
Pollen tube reuses intracellular components of nucellar cells undergoing programmed cell death in Pinus densiflora
R. Hiratsuka (2010)
10.1007/s102650200019
Programmed cell death of Pinus nucellus in response to pollen tube penetration
R. Hiratsuka (2002)
10.1104/pp.105.060673
Autophagic Nutrient Recycling in Arabidopsis Directed by the ATG8 and ATG12 Conjugation Pathways1
Allison R Thompson (2005)
10.1104/PP.125.2.615
Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in Zinnia.
K. Obara (2001)
10.1007/s00709-010-0221-x
Megasporogenesis and programmed cell death in Tillandsia (Bromeliaceae)
A. Papini (2010)
10.1016/J.BIOCEL.2004.02.005
Methods for monitoring autophagy.
N. Mizushima (2004)
10.1111/j.1365-313X.2008.03592.x
Cysteine proteases XCP1 and XCP2 aid micro-autolysis within the intact central vacuole during xylogenesis in Arabidopsis roots.
U. Avci (2008)
10.1093/jxb/ern244
An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses
S. Sláviková (2008)
10.1093/pcp/pcr137
Autophagy in tobacco BY-2 cells cultured under sucrose starvation conditions: isolation of the autolysosome and its characterization.
Chihiro Takatsuka (2011)
10.1038/cdd.2011.36
Morphological classification of plant cell deaths
W. V. Doorn (2011)
10.1016/j.tplants.2010.04.009
What about the role of autophagy in PCD?
W. G. van Doorn (2010)
10.1111/J.1365-313X.2005.02396.X
Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein.
Anthony L Contento (2005)
10.1016/j.bbadis.2008.10.016
Autophagy: principles and significance in health and disease.
Virginia Todde (2009)
10.1007/BF01041213
Use of Triton WR-1339 in cytochemical and biochemical characterization of phytolysosomes
C. Coulomb (2005)
10.1016/j.tplants.2012.05.006
Autophagy: a multifaceted intracellular system for bulk and selective recycling.
Faqiang Li (2012)
10.3732/ajb.1100552
Avoiding transport bottlenecks in an expanding root system: xylem vessel development in fibrous and pioneer roots under field conditions.
A. Bagniewska-Zadworna (2012)
10.1038/ncb0910-814
Eaten alive: a history of macroautophagy
Z. Yang (2010)
10.1104/pp.111.4.1233
Autophagy in Tobacco Suspension-Cultured Cells in Response to Sucrose Starvation
Y. Moriyasu (1996)
10.1111/j.1742-4658.2010.07741.x
Peroxisomes as dynamic organelles: autophagic degradation
M. Oku (2010)
10.1146/annurev-phyto-072910-095333
What can plant autophagy do for an innate immune response?
Andrew P. Hayward (2011)
10.1104/pp.112.199992
Reactive Oxygen Species and Autophagy in Plants and Algae1
M. E. Pérez-Pérez (2012)
10.1002/J.1537-2197.1979.TB06341.X
VACUOLE FORMATION IN THE ACTIVELY GROWING ROOT MERISTEM OF BARLEY (HORDEUM SATIVUM)
R. Buvat (1979)
Autophagy regulates programmed
Y Liu
Ca 2 + - PKC - caspase 3 - like protease pathway mediates DNA and nuclear fragmentation in ecdysteroid - induced programmed cell death
T Yamada (2010)



This paper is referenced by
10.1007/978-1-4939-7668-3_2
Investigation of Morphological Features of Autophagy During Plant Programmed Cell Death.
A. Papini (2018)
10.1007/s00709-014-0622-3
Granular bodies in root primary meristem cells of Zea mays L. var. Cuscoensis K. (Poaceae) that enter young vacuoles by invagination: a novel ribophagy mechanism
T. Niki (2014)
10.1007/s00709-018-01336-0
Pollen grain development and male sterility in the perfect flowers of Maytenus obtusifolia Mart. (Celastraceae)
I. V. N. Haddad (2018)
10.3390/ijms20122900
Autophagy in Plant: A New Orchestrator in the Regulation of the Phytohormones Homeostasis
Wentao Gou (2019)
10.1016/bs.mie.2016.09.090
Biochemical Methods to Monitor Autophagic Responses in Plants.
Y. Bao (2017)
10.1071/BT17174
Autophagy is associated with male sterility in pistillate flowers of Maytenus obtusifolia (Celastraceae)
I. V. N. Haddad (2018)
10.1007/s00709-018-1284-3
Cytological differentiation and cell wall involvement in the growth mechanisms of articulated laticifers in Tabernaemontana catharinensis A.DC. (Apocynaceae)
Yve Canaveze (2018)
10.1007/s00425-018-2996-5
Microspore embryogenesis in Brassica: calcium signaling, epigenetic modification, and programmed cell death
B. Ahmadi (2018)
10.1038/526644a
Plant biology: Pigments on the move
D. Bassham (2015)
10.3390/ijms21010194
Autophagy-Like Cell Death Regulates Hydrogen Peroxide and Calcium Ion Distribution in Xa3/Xa26-Mediated Resistance to Xanthomonas oryzae pv. oryzae
Jianbo Cao (2019)
10.3389/fpls.2018.00314
The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation
M. Matuszkiewicz (2018)
10.1104/pp.18.01379
The Local Phosphate Deficiency Response Activates Endoplasmic Reticulum Stress-Dependent Autophagy1[OPEN]
Christin Naumann (2018)
10.1071/BT17086
Floral nectaries of Heliocarpus popayanensis and Luehea divaricata (Malvaceae-Grewioideae): structure and ultrastructure
Elsa Clorinda Lattar (2018)
10.1101/186676
Comparative Analysis Of Cell Ultrastructure With Evidences Of Programmed Death In Tissue Cultures Of Cereals
N. K. Bishimbayeva (2017)
10.1007/s00709-019-01413-y
Megagametophyte development and female sterility in Maytenus obtusifolia Mart. (Celastraceae)
I. V. N. Haddad (2019)
10.15698/mic2020.02.705
Viral attenuation by Endonuclease G during yeast gametogenesis: insights into ancestral roles of programmed cell death?
Jiexin Gao (2019)
10.1007/s00425-019-03190-7
Autophagy and vacuolar biogenesis during the nectary development
S. Machado (2019)
10.1186/s12870-018-1439-6
Autophagy counteracts instantaneous cell death during seasonal senescence of the fine roots and leaves in Populus trichocarpa
N. Wojciechowska (2018)
10.7727/wimj.2015.208
The Role of Neurous Autophagy in Pulmonary Encephalopathy and Signaling Pathways
J. Han (2015)
10.3390/cells9102219
Interplay between the Ubiquitin Proteasome System and Ubiquitin-Mediated Autophagy in Plants
T. Su (2020)
Update on Autophagy Dynamics of Autophagosome Formation 1 [ OPEN ]
Junmarie Soto-Burgos (2019)
10.1016/j.tplants.2018.02.010
Mitophagy: A Mechanism for Plant Growth and Survival.
Martyna Broda (2018)
10.1111/pce.13597
Cadmium induces ROS-dependent pexophagy in Arabidopsis leaves.
Nieves Calero-Muñoz (2019)
10.1111/febs.13712
To deliver or to degrade – an interplay of the ubiquitin–proteasome system, autophagy and vesicular transport in plants
Katarzyna Zientara-Rytter (2016)
10.1002/iub.1398
Post‐translational modifications in regulation of pathogen surveillance and signaling in plants: The inside‐ (and perturbations from) outside story
Saikat Bhattacharjee (2015)
10.1016/j.jplph.2014.10.010
Crystalloids in apparent autophagic plastids: remnants of plastids or peroxisomes?
A. Papini (2015)
10.1016/j.pbi.2018.09.004
Plant autophagy: new flavors on the menu.
X. Ding (2018)
10.1080/15548627.2017.1366406
Autophagy is required for gamete differentiation in the moss Physcomitrella patens
Victoria Sanchez-Vera (2017)
10.1007/s00709-019-01454-3
Structure of floral nectaries and female-biased nectar production in protandrous species Geranium macrorrhizum and Geranium phaeum
A. Konarska (2019)
10.3389/fpls.2020.00164
Autophagy: An Intracellular Degradation Pathway Regulating Plant Survival and Stress Response
Tong Su (2020)
10.1016/J.FLORA.2018.02.007
Embryology of Mammillaria dioica (Cactaceae) reveals a new male sterility phenotype
D. Sánchez (2018)
10.1111/plb.12672
Plant organ senescence - regulation by manifold pathways.
N. Wojciechowska (2018)
See more
Semantic Scholar Logo Some data provided by SemanticScholar