Online citations, reference lists, and bibliographies.
← Back to Search

Heterogeneous Catalytic Conversion Of Greenhouse Gas CO2 To Fuels

K. Ahmad, F. Parveen, Anushree Upadhyayula, S. Upadhyayula
Published 2019 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1007/S10563-014-9179-6
New Trends of Alkali Promotion in Heterogeneous Catalysis: Electrochemical Promotion with Alkaline Ionic Conductors
A. Lucas-Consuegra (2015)
10.4209/AAQR.2013.10.0326
A Review: CO2 Utilization
Chih-Hung Huang (2014)
10.1007/S11244-011-9754-2
Effect of Support in Heterogeneous Ruthenium Catalysts Used for the Selective Aerobic Oxidation of HMF in Water
Yury Y. Gorbanev (2011)
10.1016/0039-6028(88)90397-4
The interaction range in alkali metal-promoted systems
D. Heskett (1988)
10.1007/s11244-013-0159-2
Electronic Structure Effects in Transition Metal Surface Chemistry
A. Vojvodic (2013)
10.1039/C5TA10737G
CeO2-based heterogeneous catalysts toward catalytic conversion of CO2
F. Wang (2016)
10.1126/science.aal3573
Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts
Shyam Kattel (2017)
10.1166/JNN.2014.8962
Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.
A. G. Kharaji (2014)
10.1039/C2CY20604H
Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure
A. Bansode (2013)
10.1016/S0926-860X(02)00195-3
Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts
Gary Jacobs (2002)
10.1039/c3cc46791k
Cobalt catalysts for the conversion of CO2 to light hydrocarbons at atmospheric pressure.
R. Owen (2013)
10.1016/J.CATCOM.2004.10.005
Effect of alkali doping on catalytic properties of alumina-supported nickel oxide in the selective oxidehydrogenation of cyclohexane
F. Patcas (2005)
10.1016/S1004-9541(13)60573-X
A Novel γ-Alumina Supported Fe-Mo Bimetallic Catalyst for Reverse Water Gas Shift Reaction
A. G. Kharaji (2013)
10.1016/S1872-5813(12)60002-4
Effect of promoter TiO2 on the performance of CuO-ZnO-Al2O3 catalyst for CO2 catalytic hydrogenation to methanol
L. Zhang (2011)
10.1080/00139159709604766
Book Review: Climate Change 1995: The Science of Climate Change
W. C. Clark (1996)
10.1021/I100023A018
Thermodynamic product distributions for the Fischer-Tropsch synthesis
H. Stenger (1986)
10.1021/CS200055D
Mechanism of Methanol Synthesis on Cu through CO2 and CO Hydrogenation
L. Grabow (2011)
10.1016/J.JPOWSOUR.2014.10.087
Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Influence of calcination temperature
I. U. Din (2015)
10.1021/JP208448C
Theoretical Study of Methanol Synthesis from CO2 Hydrogenation on Metal-Doped Cu(111) Surfaces
Y. Yang (2012)
10.3390/CATAL5041846
Catalytic Hydrogenation of CO2 to Methanol: Study of Synergistic Effect on Adsorption Properties of CO2 and H2 in CuO/ZnO/ZrO2 System
C. Huang (2015)
10.1038/ncomms13057
Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis
Roy van den Berg (2016)
10.1021/AR800022M
Complementary structure sensitive and insensitive catalytic relationships.
R. A. Santen (2009)
10.1007/BF00808595
Methanol synthesis and reverse water-gas shift kinetics over clean polycrystalline copper
J. Yoshihara (1995)
10.1002/cctc.201500123
The Mechanism of CO and CO2 Hydrogenation to Methanol over Cu‐Based Catalysts
Felix Studt (2015)
10.1126/science.1219831
The Active Site of Methanol Synthesis over Cu/ZnO/Al2O3 Industrial Catalysts
M. Behrens (2012)
10.1016/J.JCAT.2011.04.012
Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O
Yafan Zhao (2011)
10.1016/S0042-207X(05)80144-7
Reaction of CO2 on Pd(111) activated via promotor action of alkali coadsorption
D. Ehrlich (1990)
10.1021/JP5063379
Shape Effect of Pd-Promoted Ga2O3 Nanocatalysts for Methanol Synthesis by CO2 Hydrogenation
J. Qu (2014)
10.1016/J.JCOU.2014.11.003
CO2 hydrogenation to methanol and dimethyl ether by Pd–Pd2Ga catalysts supported over Ga2O3 polymorphs
Oscar Oyola-Rivera (2015)
Investigations into low pressure methanol synthesis
I. Sharafutdinov (2013)
10.1016/J.APCATB.2015.01.010
Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol
Xiao Jiang (2015)
10.1038/nature20782
Catalyst support effects on hydrogen spillover
Waiz Karim (2017)
10.1002/anie.200903918
Water-gas shift reaction on a highly active inverse CeOx/Cu111 catalyst: unique role of ceria nanoparticles.
J. Rodriguez (2009)
10.1016/J.JCAT.2013.09.005
Towards full one-pass conversion of carbon dioxide to methanol and methanol-derived products
A. Bansode (2014)
10.1002/anie.201102619
Catalysis based on nanocrystals with well-defined facets.
Ke-bin Zhou (2012)
10.1021/ACSCATAL.6B03234
Crystal Plane Effect of Ceria on Supported Copper Oxide Cluster Catalyst for CO Oxidation: Importance of Metal–Support Interaction
W. Wang (2017)
10.1016/J.JCOU.2016.09.007
Electrochemical promotion and characterization of PdZn alloy catalysts with K and Na ionic conductors for pure gaseous CO2 hydrogenation
J. Díez-Ramírez (2016)
10.1002/3527602658
Concepts of Modern Catalysis and Kinetics: CHORKEND:CONCEP.CATALYSIS O-BK
I. Chorkendorff (2005)
10.1021/IE9806848
Carbon dioxide hydrogenation to form methanol via a reverse-water-gas-shift reaction (the CAMERE process)
O. Joo (1999)
10.1007/s10562-015-1529-0
Pd-Promoter/MCM-41: A Highly Effective Bifunctional Catalyst for Conversion of Carbon Dioxide
Y. Song (2015)
10.1002/anie.201007108
Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials' interface in selective hydrogenation of CO2 to CH3OH.
Fenglin Liao (2011)
10.1038/nchem.1873
Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol.
F. Studt (2014)
10.1039/c001484b
Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001).
Y. Yang (2010)
10.1016/0039-6028(94)91225-4
The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide
T. Sayle (1994)
10.1016/J.ELECTACTA.2015.01.153
CO2 Reduction to Methanol on CeO2 (110) Surface: a Density Functional Theory Study
N. Kumari (2015)
10.1016/J.APCATA.2012.02.021
A study on the effect of support's reducibility on the reverse water-gas shift reaction over Pt catalysts
S. Kim (2012)
10.1021/JA954323K
The mechanism of dimethyl ether formation from methanol catalyzed by zeolitic protons
Sr Blaszkowski (1996)
10.1016/J.APCATB.2017.08.048
ZrO2 support imparts superior activity and stability of Co catalysts for CO2 methanation
Wenhui Li (2018)
10.1016/J.CEJ.2016.02.069
CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: Effects of zirconia phases
Thongthai Witoon (2016)
10.1021/CS501656X
Low-Temperature CO2 Hydrogenation to Liquid Products via a Heterogeneous Cascade Catalytic System
Y. Chen (2015)
10.1016/0021-9517(79)90132-5
Catalytic synthesis of methanol from COH2: I. Phase composition, electronic properties, and activities of the Cu/ZnO/M2O3 catalysts
R. Herman (1979)
10.1039/c5cp07469j
Mechanistic and microkinetic analysis of CO2 hydrogenation on ceria.
Z. Cheng (2016)
10.1007/BF00806061
The effects of rare earth oxides on the reverse water-gas shift reaction on palladium/alumina
D. Pettigrew (1994)
10.1002/cctc.201500719
Potassium‐Induced Effect on the Structure and Chemical Activity of the CuxO/Cu(1 1 1) (x ≤ 2) Surface: A Combined Scanning Tunneling Microscopy and Density Functional Theory Study
Wei An (2015)
10.1016/J.JCOU.2016.06.009
Effect of support of Co-Na-Mo catalysts on the direct conversion of CO2 to hydrocarbons
R. Owen (2016)
10.1016/J.APCATB.2016.09.072
Carbon dioxide Fischer-Tropsch synthesis: A new path to carbon-neutral fuels
Yo Han Choi (2017)
10.1021/la903836v
Effects of hydration and oxygen vacancy on CO2 adsorption and activation on beta-Ga2O3(100).
Yun-xiang Pan (2010)
10.1126/science.1188267
Interface-Confined Ferrous Centers for Catalytic Oxidation
Q. Fu (2010)
10.1146/ANNUREV.PHYSCHEM.53.100301.131630
Electronic structure and catalysis on metal surfaces.
J. Greeley (2002)
10.1021/CS500979C
Influence of ZrO2 Structure and Copper Electronic State on Activity of Cu/ZrO2 Catalysts in Methanol Synthesis from CO2
K. Samson (2014)
10.1002/CEAT.201400157
Comparative Study on Thermodynamic Analysis of CO2 Utilization Reactions
A. Swapnesh (2014)
10.1039/C5EE02657A
Catalytic reduction of CO2 by H2 for synthesis of CO, methanol and hydrocarbons: challenges and opportunities
Marc D. Porosoff (2016)
10.1016/J.MATERRESBULL.2014.01.043
Preparation of mesoporous CeO2 and monodispersed NiO particles in CeO2, and enhanced selectivity of NiO/CeO2 for reverse water gas shift reaction
B. Lu (2014)
10.1016/S0166-9834(00)82507-5
Oxide-supported copper catalysts prepared from copper formate: Differences in behavior in methanol synthesis from CO/H2 and CO2/H2 mixtures
B. Denise (1986)
10.1016/0926-860X(90)80014-6
Support effects in cobalt-based fischer-tropsch catalysis
S. Bessell (1993)
10.1016/J.CATTOD.2013.02.016
How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol
F. Arena (2013)
10.1007/BF02706734
Effects of ceria in CO2 reforming of methane over Ni/calcium hydroxyapatite
K. Kim (2006)
10.1016/0021-9517(90)90191-L
Reactivity of surface species on zeolites in methanol conversion
L. Kubelková (1990)
10.1002/GHG.1401
In 2 O 3 as a promising catalyst for CO 2 utilization: A case study with reverse water gas shift over In 2 O 3
Qi-di Sun (2014)
10.1016/J.CATTOD.2010.07.011
A comparative density functional theory study of the direct synthesis of H2O2 on Pd, Pt and Au surfaces
R. Todorović (2011)
10.1006/JCAT.1996.0240
Methanol Synthesis and Reverse Water–Gas Shift Kinetics over Cu(110) Model Catalysts: Structural Sensitivity
J. Yoshihara (1996)
10.1002/(SICI)1097-461X(2000)77:1<341::AID-QUA33>3.0.CO;2-T
Mechanism of Methanol Synthesis on Cu(100) and Zn/Cu(100) Surfaces: Comparative Dipped Adcluster Model Study
H. Nakatsuji (2000)
10.1039/FT9959101267
Is the observed hydrogenation of formate the rate-limiting step in methanol synthesis?
P. A. Taylor (1995)
10.4172/2157-7048.1000164
Catalytic Dehydration of Methanol to Dimethyl Ether (DME) Using the Al62,2Cu25,3Fe12,5 Quasicrystalline Alloy
Jamshidi Lcla (2013)
10.1021/ACSCATAL.5B01271
Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanol: Catalytic Performance and In Situ Characterization
E. M. Fiordaliso (2015)
10.1126/science.1253057
Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2
J. Graciani (2014)
10.1016/S0926-860X(02)00221-1
Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst
Ching-Shiun Chen (2003)
10.1002/wcms.1267
Theoretical study of crystal phase effect in heterogeneous catalysis
J. Liu (2016)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar