Online citations, reference lists, and bibliographies.
← Back to Search

Asymmetric Syntheses With The Aid Of Homogeneous Transition Metal Catalysts

B. Bogdanovic, Biserka Henc, Arnold Lösler, B. Meister, Horst Pauling, G. Wilke
Published 1973 · Chemistry

Save to my Library
Download PDF
Analyze on Scholarcy Visualize in Litmaps
Share
Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager
Time to take this seriously.
Get Citationsy
The progress made in the field of homogeneous catalysis during the last five to six years has led, inter alia, to the development of highly selective catalysts for asymmetric syntheses. Homogeneous asymmetric hydrogenation, using well defined transition metal catalysts, may be achieved with optical yields of 85 to 90% or more. Catalytic reactions, in which the chiral centers are generated by CC bond formation, can result in optical yields of 70 to 80%. The hydrogenation catalysts consist primarily of rhodium(I) complexes containing “Homer phosphanes”, phosphanes with chiral C atoms, or optically active amides. Catalysts which induce optical activity through the formation of CC bonds have been developed from π-allylnickel halides, Lewis acids, and phosphanes containing chiral C atoms. The results obtained signify a breakthrough in an area of catalysis previously restricted to syntheses involving enzymes.
This paper references
10.1021/JA01158A054
Displacement Reactions Involving Optically Active Alkyl Bromides and Organometallic Compounds1
R. L. Letsinger (1950)
10.1002/JLAC.19505670105
Über Nebenreaktionen der Ozonspaltung
K. Ziegler (1950)
10.1038/178323B0
An Asymmetric Catalyst
S. Akabori (1956)
10.1002/CBER.19580910223
Spezifische Protonenacceptoren als Hilfsbasen bei Alkylierungs‐ und Dehydrohalogenierungsreaktionen
S. Huenig (1958)
10.1021/JO01092A002
Synthesis of (+)(S)-3-Methyl-1-pentene
P. Pino (1959)
10.1021/JA01524A066
Resolution, Stereochemial Correlation and Maximum Rotations of the Norbornane- and 5-Norbornene-2-carboxylic Acids. Isotope Dilution as an Aid in the Determination of Optical Purity1
J. Berson (1959)
10.1021/JA01524A067
The Stereochemistry of the Perbenzoic Acid Oxidation of Optically Active exo-Acetylnorbornane1
J. A. Berson (1959)
10.1002/MACP.1961.020430106
Asymmetric synthesis of optically active di-isotactic polymers from cyclic monomers
G. Natta (1961)
10.1021/JA01480A012
The Absolute Configurations of Some Simple Norbornane Derivatives. A Test of the “Conformational Asymmetry” Model1a
J. Berson (1961)
10.1002/MACP.1961.020430128
Anionic catalytic systems for asymmetric synthesis of polymers
G. Natta (1961)
10.1351/pac196204020363
Progress in the stereospecific polymerization and asymmetric synthesis of macromolecules
G. Natta (1962)
10.1021/CR60223A006
Resolution of Optical Isomers by Crystallization Procedures.
R. Secor (1963)
10.1002/MACP.1963.020670123
Synthesis of optically active cis-1,4 poly(1,3-pentadiene) by asymmetric induction, kurzmitteilung
G. Natta (1963)
10.1002/MACP.1963.020610108
Optically active polymers: Some new results and remarks on the asymmetric polymerization of benzofuran
M. Farina (1963)
10.1021/JA01057A022
Hydroboration. XVIII. The Reaction of Diisopinocampheylborane with Representative cis-Acyclic, Cyclic, and Bicyclic Olefins. A Convenient Systhesis of Optically Active Alcohols and Olefins of High Optical Purity and Established Configuration
H. Brown (1964)
10.1007/BFB0050992
Synthese und Eigenschaften von optisch aktiven Polymeren
R. C. Schulz (1965)
10.1002/ANGE.19660780302
Allyl‐Übergangsmetall‐Systeme
G. Wilke (1966)
10.1007/BFB0051609
Optically active addition polymers
P. Pino (1966)
10.1093/CHROMSCI/4.2.51
Resolution of Optical Isomers by Gas Liquid Partition Chromatography
E. Gil-av (1966)
10.1002/ANIE.196601511
Allyl‐Transition Metal Systems
G. Wilke (1966)
10.1016/S0040-4020(01)91998-2
Homogeneous catalysis in the decomposition of diazo compounds by copper chelates
H. Nozaki (1968)
10.1021/JA01015A030
Unsymmetrical secondary phosphine oxides. Synthetic, isotopic exchange, and stereochemical studies
T. L. Emmick (1968)
10.1021/AC60269A042
Effect of solute structure on separation of diastereoisomeric esters and amides by gas-liquid chromatography
J. W. Westley (1968)
10.1002/ANGE.19680802413
Asymmetrische katalytische Hydrierung mit einem homogen gelösten optisch aktiven Phosphin‐Rhodium‐Komplex
L. Horner (1968)
10.1021/JA01020A017
Synthesis and absolute configuration of optically active phosphine oxides and phosphinates
O. Korpiun (1968)
10.1021/IE50704A007
OPTICAL ISOMER SEPARATION—Quest for a New Biochemical Technology
D. R. Buss (1968)
10.1021/JA01053A021
Use of hexachlorodisilane as a reducing agent. Stereospecific deoxygenation of acyclic phosphine oxides
K. Naumann (1969)
10.1002/ANIE.196905191
Hydrido and Alkyl(aryl)hydrido Complexes of Nickel
K. Jonas (1969)
10.1002/ANGE.19690811411
Hydrido‐ und Alkyl(aryl)hydrido‐Komplexe des Nickels
K. Jonas (1969)
10.1021/JA01033A017
Mechanism of the copper-catalyzed addition of diazoalkanes to olefins. I. Steric effects
W. Moser (1969)
10.1016/S0021-9673(01)97971-3
Studies on the gas-liquid chromatographic separation of diastereoisomeric esters.
R. Stern (1969)
10.1111/j.1749-6632.1970.tb34979.x
CATALYTIC ASYMMETRIC HYDROGENATION USING SOLUBLE, OPTICALLY ACTIVE PHOSPHINE COMPLEXES
W. Knowles (1970)
10.1021/JA00722A083
Stereospecific alkylation of menthyl phenylphosphinate
W. B. Farnham (1970)
10.1021/IE50732A005
Olefin Transformations Catalyzed by Organonickel Compounds
B. Bogdanović (1970)
10.1002/ANGE.19710832303
Methoden der asymmetrischen Synthese – enantioselektive katalytische Hydrierung
Y. Izumi (1971)
10.1016/S0022-328X(00)87455-0
Asymmetric hydrosilylation with a chiral phosphine-nicle(II) complex.
K. Yamamoto (1971)
10.1021/JA00749A080
Asymmetric homogeneous hydrosilylation with platinum(II) complexes of chiral phosphines
K. Yamamoto (1971)
10.1021/JA00734A066
Asymmetric homogeneous hydrogenation with rhodium(I) complexes of chiral phosphines
J. D. Morrison (1971)
10.1002/ANIE.197108711
Methods of Asymmetric Synthesis—Enantioselective Catalytic Hydrogenation
Y. Izumi (1971)
10.1021/JA00746A041
Partial resolution of racemic tertiary phosphines with an asymmetric palladium complex
S. Otsuka (1971)
10.1246/BCSJ.44.583
Asymmetric Hydrogenation Catalyzed by Bis(dimethylglyoximato)cobalt(II)-Optically Active Amine Complex
Y. Ohgo (1971)
10.1021/JA00773A028
Asymmetric catalytic reduction with transition metal complexes. I. Catalytic system of rhodium(I) with (-)-2,3-0-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)butane, a new chiral diphosphine
H. Kagan (1972)
10.1002/ANGE.19720842118
Eine katalytisch verlaufende asymmetrische Synthese
B. Bogdanovic (1972)
10.1002/ANIE.197210231
A Catalyzed Asymmetric Synthesis
B. Bogdanović (1972)
10.1021/JA00767A074
Asymmetric homogeneous hydrosilylation with chiral phosphine-palladium complexes
Y. Kiso (1972)
10.1002/ANIE.197306691
Asymmetric Induction by a Chiral Bisphosphane‐Rhodium Complex in the Hydroformylation of Aliphatic Olefins
G. Consiglio (1973)
10.1002/ANGE.19730851509
Asymmetrische Induktion durch einen chiralen Bisphosphan-Rhodium-Komplex bei der Hydroformylierung aliphatischer Olefine
G. Consiglio (1973)
10.1021/BA-1968-0070.CH013
π-Allylnickel Compounds as Homogeneous Catalysts
U. Birkenstock (1974)



This paper is referenced by
10.1039/c9cy01501a
Coordination chemistry and catalysis with secondary phosphine oxides
A. Gallen (2019)
10.1134/S1070427218050026
Selective Hydrogenation of 5-Vinylnorborn-2-ene and Other Methods for the Synthesis of 2-Vinylnorbornane
N. Ushakov (2018)
10.1002/ZAAC.201800016
Bowl Shaped Monodentate Phosphines by Condensation of Imidazole Units with Boranes
Helene Schall (2018)
10.1039/C8QO01020J
Mechanism and origins of chemo- and regioselectivities of (NHC)NiH-catalyzed cross-hydroalkenylation of vinyl ethers with α-olefins: a computational study
H. Wu (2018)
10.1134/S0965544118120125
Selective Hydrogenation of 5-Vinyl-2-Norbornene to 2-Vinylnorbornane
Sergey Shorunov (2018)
10.1002/CJOC.201800314
Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis
Jianhui Chen (2018)
10.1039/c7ob01494e
The mechanism and regioselectivities of (NHC)nickel(ii)hydride-catalyzed cycloisomerization of dienes: a computational study.
Y. Gao (2017)
10.1021/ACSCATAL.5B01075
Computational Exploration of Mechanism and Selectivities of (NHC)Nickel(II)hydride-Catalyzed Hydroalkenylations of Styrene with α-Olefins
Xin Hong (2015)
10.1021/ja501979g
Chemoselective Reactions of (E)-1,3-Dienes: Cobalt-Mediated Isomerization to (Z)-1,3-Dienes and Reactions with Ethylene
Yam N. Timsina (2014)
10.1016/B978-0-08-097742-3.00533-4
5.32 Hydrovinylation Reactions in Organic Synthesis
T. V. RajanBabu (2014)
10.1515/revic-2014-0006
Metal-organophosphine complexes: structure, bonding, and applications
Joe Gerald Jesu Raj (2014)
10.1002/anie.201205537
Facts are the enemy of truth-reflections on serendipitous discovery and unforeseen developments in asymmetric catalysis.
R. Noyori (2013)
10.1002/anie.201303916
Transition-metal-catalyzed laboratory-scale carbon-carbon bond-forming reactions of ethylene.
Vaneet Saini (2013)
10.1016/B978-0-08-097774-4.00613-6
Chiral Phosphorous Ligands in Asymmetric Catalysis
T. Kégl (2013)
10.1002/ANGE.201303916
Übergangsmetallkatalysierte C‐C‐Kupplungen mit Ethylen im Labormaßstab
Vaneet Saini (2013)
10.1002/9783527654543.CH9
Hydroformylations, Hydrovinylations, and Hydrocyanations
M. Boysen (2013)
10.1039/C3CY00084B
Metal catalysed hydrovinylation
R.Ma. Ceder (2013)
10.1002/ANGE.201205537
Fakten sind der Feind der Wahrheit – Betrachtungen über Zufallsentdeckungen und ungeahnte Entwicklungen der asymmetrischen Katalyse
R. Noyori (2013)
10.1016/B978-0-08-095167-6.00518-8
5.16 Reduction: Enantioselective Hydrovinylation of Alkenes
T. V. RajanBabu (2012)
10.1021/ol201142v
Ruthenium-catalyzed hydrovinylation of N-acetylenamines leading to amines with a quaternary carbon center.
Q. Wang (2011)
10.1002/anie.201003133
Cobalt-catalyzed asymmetric hydrovinylation.
D. Vogt (2010)
10.1039/b921492e
Ni-, Pd-, or Pt-catalyzed ethylene dimerization: a mechanistic description of the catalytic cycle and the active species.
D. Roy (2010)
10.1002/ANGE.201003133
Cobalt-katalysierte asymmetrische Hydrovinylierung
D. Vogt (2010)
10.1002/chem.200801505
Chirality in the absence of rigid stereogenic elements: the design of configurationally stable C3-symmetric propellers.
T. Benincori (2009)
10.1002/ADSC.200800201
New Functionalized Vinyl Monomers by Ethylene‐(Functionalized)‐Norbornene Hetero‐Trimerization Catalyzed by Cobalt(II)‐(Imino)pyridine Complexes
A. Toti (2008)
10.1016/J.CCR.2007.09.021
Synthesis and application of chiral monodentate phosphines in asymmetric hydrogenation
Giulia Erre (2008)
10.5012/BKCS.2007.28.12.2139
Ruthenium complex-catalyzed highly selective co-oligomerization of alkenes
Y. Ura (2007)
10.1002/9780470145319.CH103
By Nickel Catalysts
W. Kaminsky (2007)
10.1002/9780470147214.CH3
Asymmetric Synthesis Mediated by Transition Metal Complexes
B. Bosnich (2007)
10.1002/9780470147191.CH3
New Approaches in Asymmetric Synthesis
H. Kagan (2007)
10.1002/9780470147276.CH3
Enantioselective Synthesis of Organic Compounds with Optically Active Transition Metal Catalysts in Substoichiometric Quantities
H. Brunner (2007)
10.1016/J.TET.2005.03.120
Tunable phosphinite, phosphite and phosphoramidite ligands for the asymmetric hydrovinylation reactions
Haengsoon Park (2005)
See more
Semantic Scholar Logo Some data provided by SemanticScholar