Online citations, reference lists, and bibliographies.
← Back to Search

Apomixis In The Gramineae: Panicoideae.

W. V. Brown, W. H. P. Emery
Published 1958 · Biology

Save to my Library
Download PDF
Analyze on Scholarcy
Share
APOMIXIS, THE replacement of the sexual process by some asexual form of reproduction, is rather common in the flowering plants. Nygren (1954) listed about 300 species that are more or less apomictic included in about 95 genera of 37 families of both monocotyledons and dicotyledons. The Compositae, Rosaceae, and Gramineae especially are characterized by a rather high frequency of apomixis. For the Gramineae, Nygren listed apomixis in 35 species of 11 genera; two genera of Festuceae, two of Agrostideae, two of Chlorideae, three of Paniceae, one of Aveneae, and one genus of the Andropogoneae. A number of these cases represent occasional vivipary, the replacement of spikelets by small plants, rather than agamospermy, apomixis by seed formation. During the last few years Farquharson (1955) reported apomixis of some sort in Tripsacum dactyloides (Maydeae) while Hair (1956) characterized apomixis in Agropyron scabrum of the Hordeae bringing to eight the number of tribes having one or more apomictic species. In the Paniceae additional apomictic species have been reported in Pennisetum (Narayan, 1951; Fisher, et al., 1954; Snyder, et al., 1955), Paspalum (Snyder, 1957), and Setaria (Emery, 1957) while Brown and Emery (1957b), Emery and Brown (unpublished), and Celarier and Harlan (1957) have reported apomixis in Bothriochloa, Dichanthium, Capillipedium, Themeda, and Heteropogon of the Andropogoneae. At present 11 species of Paniceae and 14 species of Andropogoneae have been found to be apomictic. These results led to the assumption that apomixis may be especially common in these two tribes. The apomictic mechanism characteristic of the Paniceae and Andropogoneae except Saccharumn (cf. Nygren, 1954) is apospory. In many species more than one aposporous embryo sac is formed in each ovule. It has furthermore been demonstrated (Narayan, 1951; Warmke, 1954; Snyder, et al, 1955; Emery, 1957; Brown and Emery, 1957b; Emery and Brown, unpublished) that aposporous embryo sacs in species of these two tribes usually have at maturity only four nuclei, whereas sexual embryo sacs have the usual eight nuclei. The four nuclei are the egg and either two synergids and one polar or one synergid and two polar nuclei, both conditions having been found repeatedly. Antipodal cells are completely lacking. Thus the sexual or aposporous nature of sin-le embryo sacs is often indicated. The term apospory alone does not imply apomixis
This paper references
10.2134/AGRONJ1956.00021962004800110007X
Sterility in Pangolagrass (Digitaria decumbens Stent)1
Anilkumar A. Sheth (1956)
10.1002/J.1537-2197.1949.TB05296.X
APOMIXIS IN SIDE‐OATS GRAMA
J. Harlan (1949)
10.1086/335950
Apomixis in the Gramineae, Tribe Andropogoneae: Themeda triandra and Bothriochloa ischaemum
W. V. Brown (1957)
10.1002/J.1537-2197.1956.TB11182.X
CYTOGENETICS AND EVOLUTION OF THE GRASS FAMILY
G. Stebbins, (1956)
10.1002/J.1537-2197.1951.TB14898.X
A STUDY OF STERILITY IN HILARIA BELANGERI (STEUD.) NASH AND HILARIA MUTICA (BUCKL.) BENTH.
W. V. Brown (1951)
10.1111/J.1558-5646.1955.TB01521.X
Animal cytology and evolution.
M. White (1955)
10.2307/2483112
Extra-Ovular Development of Embryos in Two Grass Species
W. H. P. Emery (1957)
10.1002/J.1537-2197.1957.TB10580.X
PERSISTENT NUCLEOLI AND GRASS SYSTEMATICS
W. V. Brown (1957)
10.1086/335864
The Mechanism of Apomixis in Pennisetum ciliare
L. Snyder (1955)
Cytology of parthenogenesis in Poa pratensis.
F. W. Tinney (1940)
Apomixis in higher plants
A. Gustafsson (1946)
10.2307/2482786
A Study of Reproduction in Setaria macrostachya and Its Relatives in the Southwestern United States and Northern Mexico
W. H. P. Emery (1957)
Fertilization without Reduction in Guayule (Parthenium Argentatum Gray) and a Hypothesis as to the Evolution of Apomixis and Polyploidy.
L. Powers (1945)
10.2134/AGRONJ1954.00021962004600090002X
Evidence for Apomixis in Pennisetum ciliare and Cenchrus setigerus 1
W. Fisher (1954)
10.1002/J.1537-2197.1957.TB10581.X
THE ORGANIZATION OF THE GRASS SHOOT APEX AND SYSTEMATICS
W. V. Brown (1957)
10.1002/J.1537-2197.1958.TB13105.X
GRASS GERMINATION RESPONSES TO ISOPROPYL‐PHENYL CARBAMATE AND CLASSIFICATION
M. Al-Aish (1958)
APOMIXIS IN THE GRAMINEAE. TRIBE ANDROPOGONEAE: HETEROPOGON CONTORTUS
W. H. P. Emery (1958)
10.2307/2257940
Variation and Evolution in Plants
G. Stebbins, (1950)
Hybridity and apomixis in the perennial grass, Paspalum dilatatum.
Showalter Am (1948)
Monoploids in maize.
S. S. Chase (1952)
10.5962/bhl.title.5681
An introduction to the embryology of angiosperms
P. Maheshwari (1950)
10.2307/2997143
The Structure and Development of the Caryopsis in Some Indian Millets. III. Paspalum scrobiculatum L.
S. Narayanaswami (1954)
10.1111/J.1601-5223.1946.TB02778.X
The genesis of some Scandinavian species of Calamagrostis.
A. Nygren (1946)
10.1038/hdy.1956.15
Subsexual reproduction in Agropyron
J. Hair (1956)
10.1002/J.1537-2197.1955.TB10416.X
APOMIXIS AND POLYEMBRYONY IN TRIPSACUM DACTYLOIDES
L. I. Farquharson (1955)
10.2307/2481828
A Cytotaxonomic Study of Bouteloua curtipendula and B. uniflora
L. E. Freter (1955)
10.1002/J.1537-2197.1954.TB14297.X
APOMIXIS IN PANICUM MAXIMUM
H. E. Warmke (1954)
10.1002/J.1537-2197.1957.TB10547.X
APOMIXIS IN PASPALUM SECANS
L. Snyder (1957)



This paper is referenced by
10.1080/03746606608685139
Reflections on the role of environmentally-governed reproductive versatility in the adaptation of plant populations
J. Heslop-harrison (1966)
10.1111/j.1469-8137.2012.04381.x
Competition between meiotic and apomictic pathways during ovule and seed development results in clonality.
Diego H. Hojsgaard (2013)
EL MECANISMO REPRODUCTIVO DE LA HIERBA GUINEA (Panicum maximum Jacq.)
P. Simo (1978)
10.1007/BF03053219
Development of the caryopsis inChionachne koenigii Linn.
T. V. C. Satyamurty (1984)
10.14522/DARWINIANA.2014.401-4.237
Comportamiento citológico y reproductivo de Setaria pflanzii (Poaceae)
I. Caponio (2002)
10.1002/9780470650158.CH2
Apomixis: genetics and breeding.
Y. Savidan (2010)
10.1007/BF00022419
Breeding Panicum maximum in Brazil. 1. Genetic resources, modes of reproduction and breeding procedures
Y. Savidan (2004)
The transference of apomixis genes from Manihot neusana Nassar to cassava, M. esculenta Crantz By
A. Nassar ()
10.1590/S0103-84781998000100028
A apomixia no melhoramento de plantas
R. P. Cruz (1998)
10.1007/s004970000060
Non-Mendelian transmission of an apospory-specific genomic region in a reciprocal cross between sexual pearl millet (Pennisetum glaucum) and an apomictic F1 (P. glaucum×P. squamulatum)
D. Roche (2001)
10.1080/0028825X.1979.10432571
Breeding systems in the grasses: a survey
H. E. Connor (1979)
10.1111/J.1601-5223.2000.00167.X
Brief report : the transference of apomixis genes from manihot neusana nassar to cassava, M. esculenta crantz
N. M. A. Nassar (2000)
10.1007/BF00222459
Molecular markers shared by diverse apomictic Pennisetum species
E. L. Lubbers (2004)
10.1016/0960-8524(95)00176-X
Switchgrass as a sustainable bioenergy crop
M. Sanderson (1996)
Chapter 20 Apomixis in the Era of Biotechnology
E. Albertini (2009)
10.1016/B978-1-4831-9862-0.50009-3
CYTOLOGIE, TAXONOMIE UND EVOLUTION BEI SAMENPFLANZEN
F. Ehrendorfer (1964)
10.1016/S0065-2504(08)60332-3
Forty Years of Genecology
J. Heslop-harrison (1964)
10.1007/BF01429223
Comparative isozyme polymorphisms of north American eastern gamagrass,Tripsacum dactyloides var.dactyloides and maize,Zea mays L.
B. Kindiger (2005)
10.1139/B60-063
A DEVELOPMENTAL STUDY OF WILD RICE, ZIZANIA AQUATICA L.
C. E. Weir (1960)
10.1111/plb.12549
Reproductive biology of the native forage grass Trichloris crinita (Poaceae, Chloridoideae).
P. C. Kozub (2017)
10.1023/A:1002974304592
Genetic variation in the agamic species complex of Pennisetum section Brevivalvula (Poaceae) from West Africa: ploidy levels and isozyme polymorphism
G. Schmelzer (2004)
10.1086/336471
Mechanism of Apomixis in Dichanthium annulatum (Forssk) Stapf
P. Reddy (1969)
10.4238/2013.April.2.14
Apomixis in cassava: advances and challenges.
D. Y. Freitas (2013)
10.1016/S0254-6299(16)31505-8
Cytotaxonomic studies in Themeda triandra. I. Chromosome numbers and microsporogenesis
H. Liebenberg (1986)
10.1016/B978-0-12-774750-7.50007-5
Chapter 1 – The Evolution of the Grass Family
G. Stebbins, (1972)
10.1139/B66-114
DEVELOPMENT OF THE EMBRYO SAC AND EMBRYO OF TEFF, ERAGROSTIS TEF
Melak H. Mengesha (1966)
10.1007/978-3-319-21254-8_2
Biology and Genetics of Reproductive Systems
M. G. Karasawa (2015)
10.2307/2446633
Cytological and molecular evaluation of the reproductive behavior of Tripsacum andersonii and a female fertile derivative (Poaceae).
C. Dewald (1998)
10.1007/978-94-017-1669-7_23
Apomixis — other pathways for reproductive development in angiosperms
A. Koltunow (1994)
10.1508/CYTOLOGIA.35.111
Cytological Studies in the Tribe Paniceae, Gramineae
J. Nath (1970)
10.1007/BF02921265
Cytological relationships of selected species ofPanicum L.
M. Hamoud (2008)
10.1007/BF03052963
Embryological studies in three species ofCymbopogon Spreng (Poaceae)
S. P. Choda (1982)
See more
Semantic Scholar Logo Some data provided by SemanticScholar