Online citations, reference lists, and bibliographies.
← Back to Search

The Mechanism Of Bacteriorhodopsin Functioning. I: The Light-induced Proton Throw-over By Retinal

V. V. Krasnogolovets, N. A. Protsenko, P. Tomchuk, V. S. Guriev
Published 1988 · Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
The path of proton motion in protein bacteriorhodopsin is constructed: Tyr 43 Tyr 26 Asp 212 Tyr 83 Tyr 57 Tyr 79 Glu 204 Tyr 64 Glu 74. From the position of quantum theory the light-induced isomerization of retinal, the process carrying out the proton and throw-over from the inlet H-bond chain (Tyr 43 Tyr 26 Lys 216) to the outlet one (Lys 216 Asp 212 … Glu 74) are investigated. The kinetics of the transition of the excitation from the π-electron subsystem to the vibrational one is studied; the function of the nonequilibrial excitation distribution of the collective intramolecular retinal vibrations is found. The mechanism of deprotonation of Schiff base (transmission of proton to the outlet channel) is considered. The correspondence between the theoretically estimated states and spectroscopically identified forms of bacteriorhodosin (initial form bR, intermediates J, K) is proposed.
This paper references
10.1073/PNAS.79.16.4972
Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts.
K. Bagley (1982)
10.1016/S0022-0728(80)80277-4
Electrochemical analysis of transmembrane proton fluexes photogenerated by bacteriorhodopsin in B.L.M.
P. Seta (1980)
10.1039/DC9827400365
Photogenerated movement of protons through bacteriorhodopsin in relation to the analysis of photoelectrical responses
C. Gavach (1982)
10.1073/PNAS.77.11.6571
Exchange kinetics of the Schiff base proton in bacteriorhodopsin.
B. Ehrenberg (1980)
10.1016/S0009-2614(84)80235-3
Transient Raman spectra of the all-trans and 7-, 9-, 11- and 13-mono-cis isomers of retinal and the mechanism of the cis-trans isomerization in the lowest excited triplet state
H. Hamaguchi (1984)
10.1111/j.1751-1097.1984.tb03398.x
VACUUM UV LASER INDUCED SCISSION OF SIMIAN VIRUS 40 DNA *
M. Johnson-Thompson (1984)
10.1143/JPSJ.51.3643
Adiabatic Potential for cis-trans Isomerization of Rhodopsin Chromophore in the Deformed Excited State
H. Suzuki (1982)
10.1016/0005-2736(79)90253-0
A channel mechanism for electrogenic ion pumps.
P. Läuger (1979)
10.1073/PNAS.82.10.3227
A neutron diffraction study on the location of the polyene chain of retinal in bacteriorhodopsin.
F. Seiff (1985)
10.1111/j.1751-1097.1979.tb07148.x
CONVERSION OF LIGHT ENERGY TO ELECTROSTATIC ENERGY IN THE PROTON PUMP OF HALOBACTERIUM HALOBIUM
A. Warshel (1979)
10.1073/PNAS.77.4.2023
Path of the polypeptide in bacteriorhodopsin.
D. Engelman (1980)
10.1016/0022-2836(75)90212-0
Molecular structure determination by electron microscopy of unstained crystalline specimens.
P. Unwin (1975)
10.1016/0014-5793(84)80628-6
Correlation of photochemical cycle, H+ release and uptake, and electric events in bacteriorhodopsin
L. Drachev (1984)
10.1007/BF00539178
Quantum-mechanical kinetic study of the primary reaction of the photochemical cycle of Halobacterium halobium
A. D. Gochev (2004)
10.1002/PSSB.2220440112
Vibronic spectra of molecular crystals under totally symmetric vibrations
A. Davydov (1971)
10.1016/0014-5793(84)80764-4
Light‐dependent trans to cis isomerization of the retinal in halorhodopsin
J. Lanyi (1984)
10.1146/ANNUREV.BI.51.070182.003103
Bacteriorhodopsin and related pigments of halobacteria.
W. Stoeckenius (1982)
[Photochemical transformations of bacteriorhodopsin].
S. Balashov (1981)
10.1002/PSSB.19700420214
Vibronic spectra of crystals at arbitrary shifts of the atomic equilibrium positions in the molecules
A. Davydov (1970)
10.1007/BF00535550
The chromophore retinal in bacteriorhodopsin does not change its attachment site, lysine 216, during proton translocation and light-dark adaptation
N. G. Abdulaev (2004)
10.1016/0006-291X(81)91293-6
Proton conduction in bacteriorhodopsin via a hydrogen-bonded chain with large proton polarizability.
H. Merz (1981)
Retinal Schiff's base microenvironment in the bacteriorhodopsin
R. Efremov (1985)
Retinal Schiff's base position relative to purple membrane surface. Surface-enhanced Raman spectroscopy
I. Nabiev (1985)
10.1016/0014-5793(82)80805-3
Rhodopsin and bacteriorhodopsin: structure—function relationships
Yu.A. Ovchinnikov (1982)
10.1002/QUA.560260527
A model of the primary process in photosynthesis
J. Avery (1984)
10.1021/BI00506A031
Environmental effects on formation and photoreaction of the M412 photoproduct of bacteriorhodopsin: implications for the mechanism of proton pumping.
O. Kalisky (1981)
10.1063/1.3061720
Introduction to solid state physics
C. Kittel (1953)
Orientation of retinal in bacteriorhodopsin as studied by cross-linking using a photosensitive analog of retinal.
K. Huang (1982)
10.1111/J.1432-1033.1981.TB06244.X
The role of tyrosine residues in the function of bacteriorhodopsin. Specific nitration of tyrosine 26.
H. D. Lemke (1981)
10.1073/PNAS.77.8.4726
Location of the chromophore in bacteriorhodopsin.
G. I. King (1980)
10.1143/JPSJ.51.3302
Theoretical Studies of Photoisomerization in Visual Pigments. I. Formulation
T. Kakitani (1982)
10.1016/0304-4173(77)90003-9
H+-Adenosine triphosphatase and membrane energy coupling.
I. Kozlov (1977)
10.1016/0022-2836(75)90123-0
The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern.
R. Henderson (1975)
10.1146/ANNUREV.PC.29.100178.000335
Light Energy Transduction in Visual Pigments and Bacteriorhodopsin
B. Honig (1978)
10.1143/JPSJ.51.3309
Theoretical Studies of Photoisomerization in Visual Pigments.II.Numerical Calculation
T. Kakitani (1982)
10.1073/PNAS.75.2.549
The molecular mechanism of excitation in visual transduction and bacteriorhodopsin.
A. Lewis (1978)
10.1111/j.1751-1097.1982.tb04364.x
ON THE ROLE OF TYROSINE IN THE PHOTOCYCLE OF BACTERIORHODOPSIN
V. Rosenbach (1982)
10.1073/PNAS.81.7.2055
Determination of retinal Schiff base configuration in bacteriorhodopsin.
S. O. Smith (1984)
10.1038/272085A0
A mechanism for the light-driven proton pump of Halobacterium halobium
K. Schulten (1978)
10.1016/0304-4173(79)90006-5
Bacteriorhodopsin and the purple membrane of halobacteria.
W. Stoeckenius (1979)
10.1103/PHYSREVLETT.42.1698
Solitons in polyacetylene
W. Su (1979)
10.1016/0006-291X(81)91676-4
Effect of iodination on the pK of Schiff base deprotonation and M 412 production in purple membrane.
G. Gogel (1981)
10.1103/PHYSREVB.22.2099
Soliton excitations in polyacetylene
W. Su (1980)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar