Online citations, reference lists, and bibliographies.
← Back to Search

Single Grain Boundary Break Junction For Suspended Nanogap Electrodes With Gapwidth Down To 1-2 Nm By Focused Ion Beam Milling.

Ajuan Cui, Zhe Liu, H. Dong, Y. Wang, Y. Zhen, W. Li, Junjie Li, C. Gu, W. Hu
Published 2015 · Materials Science, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Single grain boundary junctions are used for the fabrication of suspended nanogap electrodes with a gapwidth down to 1-2 nm through the break of such junctions by focused ion beam (FIB) milling. With advantages of stability and no debris, such nanogap electrodes are suitable for single molecular electronic device construction.
This paper references
10.1002/adma.201301219
Single-molecule electrical biosensors based on single-walled carbon nanotubes.
Xuefeng Guo (2013)
10.1038/nnano.2009.10
Mechanically controlled binary conductance switching of a single-molecule junction.
S. Y. Quek (2009)
10.1103/PHYSREVB.66.060101
Intergranular fracture in nanocrystalline metals
D. Farkas (2002)
10.1088/0957-4484/21/44/445304
Controlled electroplating and electromigration in nickel electrodes for nanogap formation.
L. D. L. S. Valladares (2010)
10.1063/1.124354
Fabrication of metallic electrodes with nanometer separation by electromigration
H. Park (1999)
10.1016/J.SUSC.2004.04.061
Measurement of electron transport properties of molecular junctions fabricated by electrochemical and mechanical methods
X. Li (2004)
10.1038/nnano.2008.4
Conductivity of a single DNA duplex bridging a carbon nanotube gap.
Xuefeng Guo (2008)
10.1038/35024031
Nanomechanical oscillations in a single-C60 transistor
H. Park (2000)
10.1111/J.1151-2916.1998.TB02361.X
Surface formation energy for intergranular fracture in two-dimensional polycrystals
E. Holm (2005)
10.1016/S0168-583X(02)01697-X
Grain boundary liquid metal wetting: A synchrotron micro-radiographic investigation
E. Pereiro-López (2003)
10.1088/0957-4484/19/20/205302
Controlled manipulation of carbon nanopillars and cantilevers by focused ion beam.
S. Tripathi (2008)
10.1038/NATURE04102
Erratum: Measurement of the conductance of single conjugated molecules
T. Dadosh (2005)
10.1007/S10853-011-5677-3
Grain boundary energy anisotropy: a review
G. Rohrer (2011)
10.1021/nl401067x
Three-terminal single-molecule junctions formed by mechanically controllable break junctions with side gating.
D. Xiang (2013)
10.1063/1.123765
Controlled fabrication of metallic electrodes with atomic separation
A.F.Morpurgo (1999)
10.1016/J.ACTAMAT.2004.09.012
In situ investigation of liquid Ga penetration in Al bicrystal grain boundaries: grain boundary wetting or liquid metal embrittlement?
W. Ludwig (2005)
10.1021/nl201777m
Benzenedithiol: a broad-range single-channel molecular conductor.
Young-sang Kim (2011)
10.1016/J.MEE.2004.12.037
Maskless fabrication of nanoelectrode structures with nanogaps by using Ga focused ion beams
T. Nagase (2005)
10.1038/nature04796
Ge/Si nanowire heterostructures as high-performance field-effect transistors
Jie Xiang (2006)
10.1038/nnano.2013.26
Large tunable image-charge effects in single-molecule junctions.
M. Perrin (2013)
10.1063/1.4807663
Ion-beam-induced bending of freestanding amorphous nanowires: The importance of the substrate material and charging
Ajuan Cui (2013)
10.1038/nmat4105
Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles.
J. Sun (2014)
10.1039/c3cs35527f
Molecule-electrode interfaces in molecular electronic devices.
Chuancheng Jia (2013)
10.1088/0960-1317/14/1/303
Structural design and experimental characterization of torsional micromachined gyroscopes with non-resonant drive mode
C. Acar (2004)
10.1063/1.2172292
Nanogaps by direct lithography for high-resolution imaging and electronic characterization of nanostructures
M. D. Fischbein (2006)
10.1021/nl901355y
A nanoelectromechanical single-atom switch.
C. A. Martin (2009)
10.1021/nn900066w
Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods.
T. Jain (2009)
10.1126/SCIENCE.278.5336.252
Conductance of a Molecular Junction
M. Reed (1997)
10.1016/J.MATLET.2011.05.095
Grain boundary structure dependent fracture in nanocrystalline Au films
J. Liu (2011)
10.1021/NL050106Y
Sculpting nanoelectrodes with a transmission electron beam for electrical and geometrical characterization of nanoparticles.
H. Zandbergen (2005)
10.1109/TNANO.2002.1005429
Single-walled carbon nanotube electronics
P. McEuen (2002)
10.1021/NL052302A
Clean electromigrated nanogaps imaged by transmission electron microscopy.
D. Strachan (2006)
10.1116/1.3259919
Focused ion beam-assisted bending of silicon nanowires for complex three dimensional structures
Kimin Jun (2009)
10.1021/NL060166J
Silicon Vertically Integrated Nanowire Field Effect Transistors
J. Goldberger (2006)
10.1063/1.1769590
Self-assembled rigid conjugated polymer nanojunction and its nonlinear current-voltage characteristics at room temperature
W. Hu (2004)
10.1103/PHYSREVLETT.105.057202
Thermoelectric effect in single-molecule-magnet junctions.
R. Wang (2010)
10.1116/1.1565345
Focused ion beam induced surface amorphization and sputter processes
B. Basnar (2003)
10.1103/PHYSREVLETT.96.027801
Electron transport in self-assembled polymer molecular junctions.
W. Hu (2006)
10.1021/NL035185X
Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics
A. Javey (2004)
10.1007/S12274-011-0170-5
An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements
Y. Yang (2011)
10.1063/1.335608
Electron tunneling experiments using Nb‐Sn ‘‘break’’ junctions
J. Moreland (1985)
10.1088/0960-1317/14/4/R01
Recent developments in micromilling using focused ion beam technology
A. A. Tseng (2004)
10.1002/SMLL.200600389
High-aspect-ratio nanogap electrodes for averaging molecular conductance measurements.
Sebastian M. Luber (2007)
10.1021/NL070245A
Single-molecule devices as scaffolding for multicomponent nanostructure assembly.
Xuefeng Guo (2007)
10.1038/nnano.2009.176
Molecular electronics with single molecules in solid-state devices.
K. Moth-Poulsen (2009)
10.1038/nnano.2011.212
Mechanically controlled molecular orbital alignment in single molecule junctions.
Christopher Bruot (2011)
10.1021/NL050581W
Nanowire lithography: fabricating controllable electrode gaps using Au-Ag-Au nanowires.
S. Liu (2005)
10.1038/nature00790
Kondo resonance in a single-molecule transistor
W. Liang (2002)
10.1021/JA0648615
Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method.
Jing-Hua Tian (2006)
10.1116/1.1368670
Ion channeling effects on the focused ion beam milling of Cu
B. Kempshall (2001)
10.1039/c4cs00143e
Single-molecule electronics: from chemical design to functional devices.
L. Sun (2014)
DOI: 10.1002/adma.201500527 www.advmat.de www.MaterialsViews.com
D. Brunel (2011)
10.1063/1.2364833
Electrical characterization and Auger depth profiling of nanogap electrodes fabricated by I2-assisted focused ion beam
G. C. Gazzadi (2006)
10.1016/S0040-6090(03)00737-5
Fabrication of nano-gap electrodes using electroplating technique
Y. Kashimura (2003)
10.1016/S0040-6090(03)00772-7
Fabrication of nano-gap electrodes for measuring electrical properties of organic molecules using a focused ion beam
T. Nagase (2003)
Thin Film Materials: Stress, Defect Formation and Surface Evolution
L. Freund (2004)
10.31399/asm.hb.v02.a0001113
Thin Film Materials
Freund (2004)
10.1126/SCIENCE.1120986
Covalently Bridging Gaps in Single-Walled Carbon Nanotubes with Conducting Molecules
Xuefeng Guo (2006)
10.1016/j.mee.2011.03.011
Accelerated Publication: Characterization of ion/electron beam induced deposition of electrical contacts at the sub-µm scale
D. Brunel (2011)
10.1016/J.MATCHAR.2013.07.003
Observation of thermally etched grain boundaries with the FIB/TEM technique
Y. Palizdar (2013)
10.1038/nature02010
Single-electron transistor of a single organic molecule with access to several redox states
S. Kubatkin (2003)
10.1021/NL0703626
Sub-10 nm device fabrication in a transmission electron microscope.
M. D. Fischbein (2007)
10.1063/1.2716989
Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes
K. O'Neill (2007)
10.1049/MNL:20065049
Formation of atomic point contacts and molecular junctions with a combined mechanical break junction and electrodeposition method
X. Li (2006)
10.1017/CBO9780511565007
Ion-Solid Interactions: Fundamentals and Applications
M. Nastasi (1996)
10.1016/0009-2614(88)87486-4
Evidence of switching and rectification by a single molecule effected with a scanning tunneling microscope
A. Aviram (1989)
10.1021/nl202065x
Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes.
F. Prins (2011)
10.1103/PhysRevLett.100.206803
Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors.
X. Wang (2008)
10.1038/nnano.2008.304
Detection of heating in current-carrying molecular junctions by Raman scattering.
Zvi Ioffe (2008)
10.1038/nnano.2010.240
Vibrational and electronic heating in nanoscale junctions.
D. Ward (2011)
10.1038/nnano.2014.177
Large negative differential conductance in single-molecule break junctions.
M. Perrin (2014)
10.1116/1.1808712
Fabrication of sub-5 nm gaps between metallic electrodes using conventional lithographic techniques
P. Steinmann (2004)
10.1557/MRS2007.62
Focused ion beam microscopy and micromachining
C. A. Volkert (2007)
10.1038/35046000
Electronics using hybrid-molecular and mono-molecular devices
C. Joachim (2000)
10.1038/nphys1433
Superconductivity in a single-C60 transistor
C. Winkelmann (2009)



This paper is referenced by
10.1038/s41378-019-0100-3
Kirigami-inspired multiscale patterning of metallic structures via predefined nanotrench templates
Mengjie Zheng (2019)
10.1109/TED.2017.2673853
High-Quality and Stable Electron Emission Device With Sub-30-nm Aligned Nanogap Arrays
J. Xu (2017)
10.1039/C8RA00278A
Nanolithography using thermal stresses
G. Purohit (2018)
Electrodeposition of Fe-Ni-Co, and Cu thin films, nanowires, and sculpting nanoscaled features
X. Geng (2017)
10.1088/1361-6463/ab6bec
Enhancing local electric fields at plasmonic nanogaps by optimal dielectric coatings
L. Deng (2020)
10.1002/ADMI.201900243
Spontaneous Formation of Nanogap Electrodes by Self‐Peeling Adhesion Lithography
Sihai Luo (2019)
10.1186/s11671-018-2736-6
Graphene-Based Nanoscale Vacuum Channel Transistor
J. Xu (2018)
10.1007/s40843-015-0092-8
Thermal induced single grain boundary break junction for suspended nanogap electrodes
Ajuan Cui (2015)
10.1038/micronano.2017.42
Design and fabrication of crack-junctions
Valentin Dubois (2017)
10.1063/1.4976947
Optically controllable nanobreaking of metallic nanowires
Lina Zhou (2017)
10.1002/smll.201501283
Nanogap Electrodes towards Solid State Single-Molecule Transistors.
Ajuan Cui (2015)
10.1002/smll.201804177
Sub-5 nm Metal Nanogaps: Physical Properties, Fabrication Methods, and Device Applications.
Y. Yang (2019)
10.1117/12.2275662
Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)
Yung Doug Suh (2017)
10.1007/978-3-319-92955-2_5
TEM for Atomic-Scale Study: Fundamental, Instrumentation, and Applications in Nanotechnology
Y. Javed (2018)
10.1002/adom.201901337
Integrated “Hot Spots”: Tunable Sub‐10 nm Crescent Nanogap Arrays
W. Zhang (2019)
Fabrication, functionalization and electrical conductance modulation of nanoparticle based molecular electronic Nano-devices
Ishtiaq Hassan Wani (2018)
10.1021/ACS.ACCOUNTS.6B00368
Multilevel Investigation of Charge Transport in Conjugated Polymers.
H. Dong (2016)
10.1002/adma.201603124
Mass Production of Nanogap Electrodes toward Robust Resistive Random Access Memory.
Ajuan Cui (2016)
10.1002/ADMI.201800648
Plasmonic Nanogaps: From Fabrications to Optical Applications
P. Gu (2018)
10.1063/1.4935750
Highly efficient and controllable method to fabricate ultrafine metallic nanostructures
Hongbing Cai (2015)
10.1364/OL.43.002422
Fabrication of controllably variable sub-100  nm gaps in silver nanowires by photothermal-induced stress.
Pintu Ghosh (2018)
10.1080/10426914.2020.1711923
Effect of focused ion beam process parameter on Tin-Nickel-Copper micropillars microfabrication
N. S. M. Annuar (2020)
10.1002/admt.201900641
Direct Deposited Angstrom‐Scale Nanogap Electrodes with Macroscopically Measurable and Material‐Independent Capabilities for Various Applications
N. Li (2019)
10.1088/1361-6439/ab4b8e
Interdigitated silver nanoelectrode arrays: a surface-enhanced Raman scattering platform for monitoring the reorientation of molecules under an external electric field
Y. Yang (2019)
10.1007/978-3-319-39361-2_4
Nanofabrication by Ion Beam
Zheng Cui (2017)
10.1002/AELM.201600348
Nanosphere Lithography for Sub-10-nm Nanogap Electrodes
D. Ji (2017)
10.3390/s16122128
Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor
J. L. Hammond (2016)
10.1002/smll.201901820
A Review of Recent Applications of Ion Beam Techniques on Nanomaterial Surface Modification: Design of Nanostructures and Energy Harvesting.
W. Li (2019)
10.1109/IVNC.2017.8051599
Fabrication of two- and three-terminal nanogap structure by using electron beam lithography
J. Xu (2017)
10.1038/srep34961
Highly stable, extremely high-temperature, nonvolatile memory based on resistance switching in polycrystalline Pt nanogaps
H. Suga (2016)
Semantic Scholar Logo Some data provided by SemanticScholar