Online citations, reference lists, and bibliographies.
← Back to Search

Metal Alkyls With Alkylidynic Metal-Carbon Bond Character: Key Electronic Structures In Alkane Metathesis Precatalysts.

C. Copéret, C. P. Gordon
Published 2020 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
The homologation of alkanes via alkane metathesis is catalyzed at low temperatures (150 °C) by the silica-supported species  (SiO)WMe 5 and  (SiO)TaMe 4 , while (SiO)TaMe 3 Cp* is inactive. The contrasting reactivity is paralleled by differences in  13 C NMR signature; the former display significantly more deshielded isotropic chemical shifts (δ iso ) and almost axially symmetric chemical shift tensors, similar to what is observed in their molecular precursors TaMe 5 and WM 6 . Analysis of the chemical shift tensors reveals the presence of a triple-bond character in their metal-carbon (formally single) bond. This electronic structure is reflected in their propensity to generate alkylidynes and to participate in alkane metathesis, further supporting that alkylidynes are key reaction intermediates in that reaction. This study establishes chemical shift as a descriptor to identify potential alkane metathesis catalysts.
This paper references
10.1021/JA046486R
Detailed structural investigation of the grafting of [Ta(=CHtBu)(CH2tBu)3] and [Cp*TaMe4] on silica partially dehydroxylated at 700 degrees C and the activity of the grafted complexes toward alkane metathesis.
E. Le Roux (2004)
10.1021/IC00308A001
The structure of d0 ML6 complexes
S. K. Kang (1989)
10.1021/acscentsci.7b00174
Metathesis Activity Encoded in the Metallacyclobutane Carbon-13 NMR Chemical Shift Tensors
C. P. Gordon (2017)
10.1039/DT9810001204
Reactions of hexamethyltungsten(VI) in the presence of trimethylphosphine. Synthesis of methyl, ethylidyne, hydrido-, alkoxo-, and other tungsten compounds. X-Ray crystal structures of trans-ethylidyne(methyl)tetrakis(trimethylphosphine)tungsten(IV) and trihydrido(phenoxo)tetrakis(trimethylphosphine
K. W. Chiu (1981)
10.1021/cr900122p
C-H bond activation and organometallic intermediates on isolated metal centers on oxide surfaces.
C. Copéret (2010)
10.1021/ACS.ORGANOMET.8B00090
Reactivity of a Silica-Supported Mo Alkylidene Catalyst toward Alkanes:A DFT Study on the Metathesis of Propane
E. Diaz (2018)
10.1021/ar3000713
Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
Michael C Haibach (2012)
10.1063/1.2905235
Analyzing NMR shielding tensors calculated with two-component relativistic methods using spin-free localized molecular orbitals.
J. Autschbach (2008)
10.1021/ja800474h
Evaluation of the carbene hydride mechanism in the carbon-carbon bond formation process of alkane metathesis through a DFT study.
S. Schinzel (2008)
10.1126/SCIENCE.1123787
Catalytic Alkane Metathesis by Tandem Alkane Dehydrogenation-Olefin Metathesis
A. Goldman (2006)
10.1063/1.474464
Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations
Jonathan Bohmann (1997)
10.1021/ja410747g
WMe6 tamed by silica: ≡Si-O-WMe5 as an efficient, well-defined species for alkane metathesis, leading to the observation of a supported W-methyl/methylidyne species.
Manoja K Samantaray (2014)
10.1073/pnas.1803382115
NMR chemical shift analysis decodes olefin oligo- and polymerization activity of d0 group 4 metal complexes
C. P. Gordon (2018)
10.1021/JA00248A024
High oxidation state monopentamethylcyclopentadienyltungsten methyl complexes including the first d0 complex containing a highly distorted methylene ligand, W(.eta.5-C5Me5)(CH3)3(CH2)
A. H. Liu (1987)
10.1038/s41560-019-0491-2
Fuels and energy carriers from single-site catalysts prepared via surface organometallic chemistry
C. Copéret (2019)
Metal alkyls programmed to generate metal alkylidenes by α-H abstraction: prognosis from NMR chemical shift.
Christopher P. Gordon (2018)
10.1021/OM00063A013
.alpha.-Hydride vs. .beta.-hydride elimination. An example of an equilibrium between two tautomers
J. Fellmann (1982)
10.1021/ACSCATAL.8B02472
Alkane Cross-Metathesis Reaction between Light and Heavy Linear Alkanes, on a Silica Supported Well-Defined Single-Site Catalyst
N. Morlanés (2019)
10.1021/jacs.6b04307
Synergy between Two Metal Catalysts: A Highly Active Silica-Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane.
Manoja K Samantaray (2016)
10.1126/SCIENCE.276.5309.99
Metathesis of Alkanes Catalyzed by Silica-Supported Transition Metal Hydrides
Véronique Vidal (1997)
10.1002/1521-3773(20011001)40:19<3534::AID-ANIE3534>3.0.CO;2-#
"Non-VSEPR" Structures and Bonding in d(0) Systems.
M. Kaupp (2001)
10.1002/ANIE.200602171
Alkane Metathesis Catalyzed by a Well‐Defined Silica‐Supported Mo Imido Alkylidene Complex: [(SiO)Mo(NAr)(CHtBu)(CH2tBu)]
F. Blanc (2006)
10.1002/CMR.A.20136
Understanding chemical shielding tensors using group theory, MO analysis, and modern density‐functional theory
C. Widdifield (2009)
10.1021/acs.accounts.5b00518
Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts.
J. Pelletier (2016)
10.1021/JA070989Q
Intermolecular C−H Bond Activation Reactions Promoted by Transient Titanium Alkylidynes. Synthesis, Reactivity, Kinetic, and Theoretical Studies of the Ti⋮C Linkage
Brad C. Bailey (2007)
10.1021/acs.accounts.9b00225
Carbon-13 NMR Chemical Shift: A Descriptor for Electronic Structure and Reactivity of Organometallic Compounds.
C. P. Gordon (2019)
10.1021/ja202316m
Room temperature dehydrogenation of ethane to ethylene.
V. Cavaliere (2011)
10.1021/JA00167A065
The coordination geometry of gaseous hexamethyltungsten is not octahedral
A. Haaland (1990)
10.1021/ACSCATAL.7B01249
Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis
Eva Pump (2017)
10.1002/chem.200800864
Structure-reactivity relationship in alkane metathesis using well-defined silica-supported alkene metathesis catalyst precursors.
F. Blanc (2008)
10.1021/ja5113468
Alkane metathesis with the tantalum methylidene [(≡SiO)Ta(═CH2)Me2]/[(≡SiO)2Ta(═CH2)Me] generated from well-defined surface organometallic complex [(≡SiO)Ta(V)Me4].
Y. Chen (2015)
10.1002/1521-3773(20010618)40:12<2331::AID-ANIE2331>3.0.CO;2-P
σ-Bond Metathesis of Alkanes on a Silica-Supported Tantalum(V) Alkyl Alkylidene Complex: First Evidence for Alkane Cross-Metathesis.
C. Copéret (2001)
10.1002/ANGE.200602155
Von der Olefin‐ zur Alkanmetathese: eine Betrachtung aus historischer Sicht
J. Basset (2006)
10.1021/JA952231P
The Structure of Hexamethyltungsten, W(CH3)6: Distorted Trigonal Prismatic with C3 Symmetry
M. Kaupp (1996)
10.1002/ANIE.200602155
From olefin to alkane metathesis: a historical point of view.
J. Basset (2006)
10.1021/ja4060178
Room temperature dehydrogenation of ethane, propane, linear alkanes C4-C8, and some cyclic alkanes by titanium-carbon multiple bonds.
M. Crestani (2013)
10.1002/ANGE.19911031227
Metallorganische Chemie an Oxidoberflächen: Selektive, katalytische Tieftemperatur‐Hydrogenolyse von Alkanen durch ein sehr elektrophiles Zirconiumhydrid auf Kieselgel
C. Lecuyer (1991)
10.1016/J.JORGANCHEM.2011.07.015
Alkylidene and alkylidyne surface complexes: Precursors and intermediates in alkane conversion processes on supported single-site catalysts
Fernando Rascón (2011)
10.1002/ANIE.199116601
Surface Organometallic Chemistry on Oxides: Selective Catalytic Low‐Temperature Hydrogenolysis of Alkanes by a Highly Electrophilic Zirconium Hydride Complex Supported on Silica
C. Lecuyer (1991)
10.1021/jacs.6b12970
Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane.
Manoja K. Samantaray (2017)
10.1002/1521-3757(20011001)113:19<3642::AID-ANGE3642>3.0.CO;2-T
Nicht‐VSEPR‐Strukturen und chemische Bindung in d0‐Systemen
M. Kaupp (2001)
10.1021/ar900203a
Metathesis of alkanes and related reactions.
Jean-Marie Basset (2010)
10.1039/C1SC00138H
Methane activation and exchange by titanium-carbon multiple bonds
Jaime A. Flores (2011)
10.1002/ANIE.200501382
Development of tungsten-based heterogeneous alkane metathesis catalysts through a structure-activity relationship.
E. Le Roux (2005)
10.1021/ja00489a049
Multiple metal-carbon bonds. 12. Tungsten and molybdenum neopentylidyne and some tungsten neopentylidene complexes
D. N. Clark (1978)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar