Online citations, reference lists, and bibliographies.
← Back to Search

Reassigning Sense Codon AGA To Encode Noncanonical Amino Acids In Escherichia Coli

Yiyan Wang, Meng-Lin Tsao
Published 2016 · Biology, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
A new method has been developed to reassign the rare codon AGA in Escherichia coli by engineering an orthogonal tRNA/aminoacyl–tRNA synthetase pair derived from Methanocaldococcus jannaschii. The tRNA mutant was introduced with a UCU anticodon, and the synthetase was evolved to correctly recognize the modified tRNA anticodon loop and to selectively charge a target noncanonical amino acid (NAA) onto the tRNA. In order to maximize the efficiency of AGA codon reassignment, while avoiding the lethal effects caused by global codon reassignment in cellular proteins, an inducible promoter (araBAD) was utilized to provide temporal controls for overexpression of the aminoacyl–tRNA synthetase and switch on codon reassignment. Using this system, we were able to efficiently incorporate p‐acetylphenylalanine, O‐methyl‐tyrosine, and p‐iodophenylalanine into proteins in response to AGA codons. Also, we found that E. coli strain GM10 was optimal in achieving the highest AGA reassignment rates. The successful reassignment of AGA codons reported here provides a new avenue to further expand the genetic code.
This paper references
10.1039/b904091a
Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides.
J. Hein (2010)
10.1093/nar/gkv787
Reassignment of a rare sense codon to a non-canonical amino acid in Escherichia coli
Takahito Mukai (2015)
10.1021/cb500032c
Genetic Incorporation of Histidine Derivatives Using an Engineered Pyrrolysyl-tRNA Synthetase
H. Xiao (2014)
10.1021/acschembio.5b00230
Incorporation of Unnatural Amino Acids in Response to the AGG Codon.
Byeong Sung Lee (2015)
10.1002/anie.201000465
A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli.
W. Wan (2010)
10.1021/cb200542j
Expanding the genetic code of Caenorhabditis elegans using bacterial aminoacyl-tRNA synthetase/tRNA pairs.
Angela R Parrish (2012)
10.1038/nature08817
Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome
Heinz Neumann (2010)
10.1038/nchembio.657
RF1 Knockout Allows Ribosomal Incorporation of Unnatural Amino Acids at Multiple Sites
D. Johnson (2011)
10.1002/1097-0134(20001201)41:4<429::AID-PROT10>3.0.CO;2-D
Crystal structure and refolding properties of the mutant F99S/M153T/V163A of the green fluorescent protein
R. Battistutta (2000)
10.1016/J.BMCL.2004.09.059
Site-specific PEGylation of proteins containing unnatural amino acids.
A. Deiters (2004)
10.1126/science.1205822
Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement
Farren J. Isaacs (2011)
10.1038/NBT1096-1246
The molecular structure of green fluorescent protein
Fan Yang (1996)
10.1021/bi101929e
An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity.
D. D. Young (2011)
10.1002/ANGE.201105016
Die Umprogrammierung des genetischen Codes: vom Triplett‐ zum Quadruplettcode
K. Wang (2012)
10.1146/annurev.biochem.052308.105824
Adding new chemistries to the genetic code.
C. Liu (2010)
10.1002/cbic.201400075
Towards Reassigning the Rare AGG Codon in Escherichia coli
Y. Zeng (2014)
Angew.C hem. Int
L Wang (2004)
10.1073/PNAS.0401517101
An expanded genetic code with a functional quadruplet codon.
J. Anderson (2004)
10.1021/bc400168u
Genetic incorporation of a 2-naphthol group into proteins for site-specific azo coupling.
S. Chen (2013)
10.1021/acssynbio.5b00197
Efficient Reassignment of a Frequent Serine Codon in Wild-Type Escherichia coli.
J. M. Ho (2016)
10.1126/science.aaf3639
Design, synthesis, and testing toward a 57-codon genome
Nili Ostrov (2016)
10.1016/0092-8674(86)90331-4
The E. coli dnaY gene encodes an arginine transfer RNA
G. M. Garcia (1986)
10.1002/cbic.200500314
Selective Staudinger Modification of Proteins Containing p‐Azidophenylalanine
Meng-Lin Tsao (2005)
10.1073/pnas.1100387108
Optimized clinical performance of growth hormone with an expanded genetic code
H. Cho (2011)
10.1073/pnas.0804157105
Immunochemical termination of self-tolerance
J. Grünewald (2008)
10.1021/bc300295x
Development of copper-catalyzed azide-alkyne cycloaddition for increased in vivo efficacy of interferon β-1b by site-specific PEGylation.
Natalie W. Nairn (2012)
10.1046/J.1432-1327.2001.01931.X
Major tyrosine identity determinants in Methanococcus jannaschii and Saccharomyces cerevisiae tRNA(Tyr) are conserved but expressed differently.
P. Fechter (2001)
10.1021/JA058262U
The genetic incorporation of a distance probe into proteins in Escherichia coli.
Meng-Lin Tsao (2006)
10.1038/nsb934
Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion
T. Kobayashi (2003)
10.1021/JA0350076
Breaking the degeneracy of the genetic code.
I. Kwon (2003)
10.1002/ANIE.200353245
Rational design of helical columnar packing in single crystals.
Z. Wang (2004)
10.1038/nature13314
A Semi-Synthetic Organism with an Expanded Genetic Alphabet
D. Malyshev (2014)
10.1002/anie.201105016
Reprogramming the genetic code: from triplet to quadruplet codes.
K. Wang (2012)
10.1128/JB.186.17.5899-5905.2004
The Escherichia coli argU10(Ts) phenotype is caused by a reduction in the cellular level of the argU tRNA for the rare codons AGA and AGG.
K. Sakamoto (2004)
10.1016/j.jmb.2009.10.030
An enhanced system for unnatural amino acid mutagenesis in E. coli.
T. Young (2010)
10.1021/cb800215d
Site-specific incorporation of chemical probes into proteins for NMR.
A. Q. Hassan (2008)
10.1111/J.1432-1033.1993.TB18154.X
A modified uridine in the first position of the anticodon of a minor species of arginine tRNA, the argU gene product, from Escherichia coli.
K. Sakamoto (1993)
10.1126/SCIENCE.1060077
Expanding the Genetic Code of Escherichia coli
L. Wang (2001)
10.1038/nmeth864
Efficient incorporation of unnatural amino acids into proteins in Escherichia coli
Y. Ryu (2006)
10.1073/PNAS.77.6.3346
The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation.
S. Ogden (1980)
10.1021/cb300229q
Release Factor One Is Nonessential in Escherichia coli
D. B. Johnson (2012)
10.1021/cb4001662
An expanded genetic code in mammalian cells with a functional quadruplet codon.
W. Niu (2013)
10.1021/bi4000244
A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli.
Abhishek Chatterjee (2013)
10.1073/PNAS.91.26.12501
Wavelength mutations and posttranslational autoxidation of green fluorescent protein.
R. Heim (1994)
10.1016/0378-1119(91)90514-C
Low-usage codons in Escherichia coli, yeast, fruit fly and primates.
S. Zhang (1991)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar