Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

The Protoelectric Potential Map (PPM): An Absolute Two-dimensional Chemical Potential Scale For A Global Understanding Of Chemistry.

V. Radtke, D. Himmel, K. Pütz, Sascha K. Goll, I. Krossing
Published 2014 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
We introduce the protoelectric potential map (PPM) as a novel, two-dimensional plot of the absolute reduction potential (peabs scale) combined with the absolute protochemical potential (Brønsted acidity: pHabs scale). The validity of this thermodynamically derived PPM is solvent-independent due to the scale zero points, which were chosen as the ideal electron gas and the ideal proton gas at standard conditions. To tie a chemical environment to these reference states, the standard Gibbs energies for the transfer of the gaseous electrons/protons to the medium are needed as anchor points. Thereby, the thermodynamics of any redox, acid-base or combined system in any medium can be related to any other, resulting in a predictability of reactions even over different media or phase boundaries. Instruction is given on how to construct the PPM from the anchor points derived and tabulated with this work. Since efforts to establish "absolute" reduction potential scales and also "absolute" pH scales already exist, a short review in this field is given and brought into relation to the PPM. Some comments on the electrochemical validation and realization conclude this concept article.
This paper references
10.1021/OL7026416
Electrocatalytic oxidative cleavage of electron-deficient substituted stilbenes in acetonitrile-water employing a new high oxidation potential electrocatalyst. An electrochemical equivalent of ozonolysis.
X. Wu (2007)
Acidity of Nonaqueous Solutions
V. V. Alexandrov (1981)
10.1524/ZPCH.1961.30.1_2.141
Die Bestimmung der Azidität von Schwefelsäure-Wasser-Mischungen mit der RedoxfunktionR0(H)
H. Strehlow (1961)
10.1149/1.2096068
The Absolute Electrode Potential Tying the Loose Ends
H. Reiss (1988)
10.1002/JCTB.5000420302
The uniqueness of hydrogen
T. Lowry (1923)
10.1016/S0022-0728(74)80446-8
The concept of absolute electrode potential an attempt at a calculation
S. Trasatti (1974)
10.1016/0013-4686(90)85069-Y
The “absolute” electrode potential—the end of the story
S. Trasatti (1990)
10.1063/1.1313793
Calculation of the absolute hydration enthalpy and free energy of H+ and OH−
J. Mejías (2000)
10.1002/1439-7641(20020215)3:2<144::AID-CPHC144>3.0.CO;2-#
Ionic liquids: solvents for the electrodeposition of metals and semiconductors.
F. Endres (2002)
10.1108/ACMM.2003.12850EAE.001
Electrochemical Methods: Fundamentals and Applications
M. Rooij (2003)
10.1021/CR050156N
Highly efficient organic devices based on electrically doped transport layers.
K. Walzer (2007)
10.1021/la7038976
The ionic work function and its role in estimating absolute electrode potentials.
W. Fawcett (2008)
10.1021/JP012536S
Absolute Hydration Free Energy of the Proton from First-Principles Electronic Structure Calculations
Chang-Guo Zhan (2001)
10.1021/JP982638R
The Proton's Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data
M. D. Tissandier (1998)
10.1097/00010694-195210000-00019
Oxidation Potentials. Second Edition
W. M. Latimer (1952)
10.1021/JP9908404
Energetics of the Nanocrystalline Titanium Dioxide/Aqueous Solution Interface: Approximate Conduction Band Edge Variations between H0 = −10 and H- = +26
L. Lyon (1999)
10.1038/334080A0
Computed redox potentials and the design of bioreductive agents
C. A. Reynolds (1988)
10.1016/S0166-1280(00)00387-0
About the TATB assumption: effect of charge reversal on transfer of large spherical ions from aqueous to non-aqueous solvents and on their interfacial behaviour
R. Schurhammer (2000)
10.1021/CR0500030
Proton-coupled electron transfer.
M. Huynh (2007)
10.1021/cr900226k
Electrochemistry of conducting polymers--persistent models and new concepts.
J. Heinze (2010)
10.1039/B415425H
Carborane acids. New "strong yet gentle" acids for organic and inorganic chemistry.
C. Reed (2005)
10.1038/060289a0
Lehrbuch der Anorganischen Chemie
A. S. (1899)
10.1039/TF9676301224
The real free energies of solvation of ions in some non-aqueous and mixed solvents
B. Case (1967)
10.1021/JP070911W
New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light
Kazuhiko Maeda and (2007)
10.1021/JA037005R
Ion solvation thermodynamics from simulation with a polarizable force field.
A. Grossfield (2003)
10.1016/S0022-0728(81)80027-7
Determination of the chemical solvation energy of the solvated electron
Y. Harima (1981)
10.1080/0144235X.2010.535342
Nature's most squishy ion: The important role of solvent polarization in the description of the hydrated electron
J. Herbert (2011)
10.1039/TF9565201573
The real hydration energies of ions
J. Randles (1956)
Elektrokhimiya Rastvorov (Electrochemistry of Solutions)
N. A. Izmailov (1959)
10.1021/J100076A029
Thermodynamics of the Electron and the Proton
J. Bartmess (1994)
10.1021/J150300A003
The Conceptions of Electrical Potential Difference between Two Phases and the Individual Activities of Ions
E. A. Guggenheim (1928)
10.1021/jp1068945
An improved cluster pair correlation method for obtaining the absolute proton hydration energy and enthalpy evaluated with an expanded data set.
W. A. Donald (2010)
10.1021/JP063552Y
Aqueous solvation free energies of ions and ion-water clusters based on an accurate value for the absolute aqueous solvation free energy of the proton.
C. Kelly (2006)
Electrochemistry—Subvolume A Electrochemical Thermodynamics and Kinetics
R. Holze (2007)
Concepts and Models of Inorganic Chemistry
B. E. Douglas (1965)
10.1039/B512308A
The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules.
Jeffrey B. Sperry (2006)
10.1021/JA00451A001
Study of n-type semiconducting cadmium chalcogenide-based photoelectrochemical cells employing polychalcogenide electrolytes
A. Ellis (1977)
Chemistry in non-aqueous solvents
H. H. Sisler (1961)
10.5012/BKCS.2005.26.4.589
Calculation of the Solvation Free Energy of the Proton in Methanol
Sungu Hwang (2005)
10.1016/J.JCT.2011.11.011
Comment on “The nature of single-ion activity coefficients calculated from potentiometric measurements on cells with liquid junctions” by Dmitri P. Zarubin, J. Chem. Thermodyn. 43 (2011) 1135–1152
J. Vera (2012)
10.1016/0022-0728(82)85102-4
Precise compensating potential difference measurements with a voltaic cell: The surface potential of water
John R. Farrell (1982)
10.1002/1521-3757(20001103)112:21<3926::AID-ANGE3926>3.0.CO;2-U
Ionische Flüssigkeiten - neue 'Lösungen' für die Übergangsmetallkatalyse
P. Wasserscheid (2000)
10.1021/AR00156A004
Equilibrium Acidities in Dimethyl Sulfoxide Solution
F. G. Bordwell (1988)
10.1021/ED033P512
Interpreting liquid ammonia chemistry with thermodynamics
W. Jolly (1956)
10.1016/J.JCT.2011.11.012
Reply to comment by J.H. Vera and G. Wilczek-Vera on ‘The nature of single-ion activity coefficients calculated from potentiometric measurements on cells with liquid junctions’
Dmitri P. Zarubin (2012)
10.1515/ci.2002.24.6.32
Physical organic chemistry
L. Hammett (1940)
10.1002/ANGE.201000252
Eine vereinheitlichte pH‐Skala für alle Phasen
D. Himmel (2010)
Atlas d’ quilibres lectrochimiques
M. Pourbaix (1963)
10.1002/9783527622917
Electrodeposition from Ionic Liquids
F. Endres (2008)
10.1016/J.JCT.2011.02.022
The nature of single-ion activity coefficients calculated from potentiometric measurements on cells with liquid junctions
Dmitri P. Zarubin (2011)
10.1021/J150624A013
Solubility of protons in water
C. Klots (1981)
10.1021/J100323A057
Linear Solvation Energy Relationships. Standard Molar Gibbs Free Energies and Enthalpies of Transfer of Ions from Water into Nonaqueous Solvents
Y. Marcus (1988)
10.1021/AR50007A002
Fluorosulfuric acid and related superacid media
R. J. Gillespie (1968)
10.1016/J.SOLENER.2011.04.007
Introduction to the special issue on organic photovoltaics and dye sensitized solar cells
F. Nüesch (2011)
10.1021/JO060031Y
A comprehensive self-consistent spectrophotometric acidity scale of neutral Brønsted acids in acetonitrile.
Agnes Kütt (2006)
Elektrochemie
C. H. Hamann (1998)
10.1021/TX00027A005
Correlation studies of anodic peak potentials and ionization potentials for polycyclic aromatic hydrocarbons.
P. Cremonesi (1992)
10.1016/S0022-0728(75)80223-3
Reply to “Remark on the paper of S. Trasatti: The concept of absolute electrode potential. An attempt at a calculation”, by A. Frumkin and B. Damaskin
S. Trasatti (1975)
10.1126/SCIENCE.289.5476.72
Superacids--It's a Lot About Anions
D. Desmarteau (2000)
10.1016/S0022-0728(75)80222-1
Remark on the paper of S. Trasatti: The concept of absolute electrode potential. An attempt at a calculation
A. Frumkin (1975)
10.1021/jp802665d
Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
V. S. Bryantsev (2008)
10.1080/10408347008542592
Estimation of Medium Effects for Single Ions in Non-Aqueous Solvents
O. Popovych (1970)
10.1063/1.1516786
First principles electrochemistry: Electrons and protons reacting as independent ions
J. Llano (2002)
Ion Solvation
Y. Marcus (1985)
10.1021/CR50013A001
H0 And Related Indicator Acidity Function
M. Paul (1957)
10.1021/nl100550k
Artificial photosynthesis in ranaspumin-2 based foam.
D. Wendell (2010)
10.1016/J.JELECHEM.2010.03.030
Voltammetric determination of extreme standard Gibbs ion transfer energy
Astrid J Olaya (2010)
10.1002/9783527621194
Ionic Liquids in Synthesis
P. Wasserscheid (2002)
10.1038/232282b0
Organic Electrochemistry
A. Bewick (1971)
10.1021/CR60236A004
Electrode Potentials and Hydration Energies. Theories and Correlations
D. Rosseinsky (1965)
10.1016/0022-0728(82)85100-0
The concept and physical meaning of absolute electrode potential: A Reassessment
S. Trasatti (1982)
10.1021/JP026291A
Quasi-chemical theory and the standard free energy of H+(aq)
P. Grabowski (2002)
10.1021/cr1003248
Room-temperature ionic liquids: solvents for synthesis and catalysis. 2.
J. Hallett (2011)
10.1021/JP109799E
Control of the pH-Dependence of the Band Edges of Si(111) Surfaces Using Mixed Methyl/Allyl Monolayers
Erik M. J. Johansson (2011)
A
G. A. Olah (2009)
10.1016/0022-0728(88)85070-8
Standard potential and chemical solvation energy of an electron in ethylenediamine
Y. Harima (1988)
10.1021/ct300669v
Solvation Energies of the Proton in Methanol.
J. J. Fifen (2013)
10.1007/BF00643580
The evaluation and use of properties of individual ions in slution
B. Conway (1978)
10.1021/jp400069r
Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.
J. R. Pliego (2013)
10.1002/1521-3773(20001103)39:21<3772::AID-ANIE3772>3.0.CO;2-5
Ionic Liquids-New "Solutions" for Transition Metal Catalysis.
Wasserscheid (2000)
10.1002/chem.201003164
Anchor points for the unified Brønsted acidity scale: the rCCC model for the calculation of standard Gibbs energies of proton solvation in eleven representative liquid media.
D. Himmel (2011)
10.1021/ar9002812
Concerted proton-electron transfers: electrochemical and related approaches.
C. Costentin (2010)
10.1063/1.477096
Calculation of the aqueous solvation free energy of the proton
G. Tawa (1998)
10.1351/PAC-CON-11-08-15
Gas-phase electrochemistry: Measuring absolute potentials and investigating ion and electron hydration
W. Donald (2011)
10.1021/jp100402x
Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents.
A. A. Isse (2010)
10.1021/jp800782e
Efficient computational methods for accurately predicting reduction potentials of organic molecules.
Amy L Speelman (2008)
10.1351/pac198658070955
The absolute electrode potential: an explanatory note (Recommendations 1986)
S. Trasatti (1986)
10.1038/353737A0
A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films
B. O'Regan (1991)
10.1073/PNAS.79.2.701
Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation.
J. Lehn (1982)
10.1039/TF9635901126
Enthalpy of hydration of the proton
H. Halliwell (1963)
10.1063/1.1587122
Absolute hydration free energies of ions, ion–water clusters, and quasichemical theory
D. Asthagiri (2003)
Handbook of Organic Electronics and Photonics
H. S. Nalwa (2008)
10.1016/0013-4686(92)85008-9
Standard Gibbs energies of transfer of univalent ions from water to 1,2-dichloroethane
A. Sabela (1992)
10.1002/RECL.19230420815
Einige Bemerkungen über den Begriff der Säuren und Basen
J. N. Brönsted (2010)
10.1021/JA00749A021
Hammett acidity function for some super acid systems. I. Systems H2SO4-SO3, H2SO4-HSO3F, H2SO4-HSO3Cl, and H2SO4-HB(HSO4)4
R. J. Gillespie (1971)
10.1063/1.556018
Evaluated Gas Phase Basicities and Proton Affinities of Molecules: An Update
E. Hunter (1998)
10.1021/JP0457141
Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron.
D. Bartels (2005)
10.1021/CR60139A001
The Relationship between Performance and Constitution of Pure Organic Explosive Compounds.
W. C. Lothrop (1949)
10.1126/science.1209688
Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency
A. Yella (2011)
リチウムイオン電池の酸化還元シャトルとしての第3級ブチル‐及びメトキシ置換ベンゼン誘導体の計算/実験を併用した研究
R. Wang (2008)
10.1146/ANNUREV.PHYSCHEM.55.091602.094446
Proton-coupled electron transfer: a reaction chemist's view.
J. Mayer (2004)
10.1039/F19747001752
Relative and absolute electrochemical quantities. Components of the potential difference across the electrode/solution interface
S. Trasatti (1974)
10.1021/CR068045R
Gibbs energies of transfer of cations from water to mixed aqueous organic solvents.
C. Kalidas (2000)
10.1351/pac198759091093
Thermodynamics of ion hydration and its interpretation in terms of a common model
Y. Marcus (1987)
10.1002/9783527629152
Electrochemistry in Nonaqueous Solutions
K. Izutsu (2002)
Brønsted, Recl
J N. (1932)
Aquatic Chemistry
W. Stumm (1996)
10.1038/176792A0
A Generalization of the Concept of Acid-Strength and Acidity
M. Mandel (1955)
10.1021/J100801A037
SINGLE ION ACTIVITIES AND ION-SOLVENT INTERACTION IN DILUTE AQUEOUS SOLUTIONS
H. Frank (1963)
10.1021/JA00045A018
Homolytic bond (H-A) dissociation free energies in solution. Applications of the standard potential of the (H+/H.bul.) couple
V. Parker (1992)
10.1021/CR050947P
"Green" atom transfer radical polymerization: from process design to preparation of well-defined environmentally friendly polymeric materials.
N. Tsarevsky (2007)
10.1021/jp408632e
Correspondence between cluster-ion and bulk solution thermodynamic properties: on the validity of the cluster-pair-based approximation.
L. Vlcek (2013)
10.1021/JA00998A006
Solvation of ions. XII. Changes in the standard chemical potential of anions on transfer from protic to dipolar aprotic solvents
R. Alexander (1967)
10.1021/JP0015731
Are the Hydrophobic AsPh4+ and BPh4- Ions Equally Solvated? A Theoretical Investigation in Aqueous and Nonaqueous Solutions Using Different Charge Distributions
Rachel Schurhammer and (2000)
10.1021/JP022326V
The Nature and Absolute Hydration Free Energy of the Solvated Electron in Water
Chang-Guo Zhan (2003)
10.1021/JP013242+
A New Cluster Pair Method of Determining Absolute Single Ion Solvation Energies Demonstrated in Water and Applied to Ammonia
T. Tuttle (2002)
10.1002/anie.201000252
A unified pH scale for all phases.
D. Himmel (2010)
10.1021/JA00052A065
Dissociative electron transfer. New tests of the theory in the electrochemical and homogeneous reduction of alkyl halides
J. Savéant (1992)
10.1126/SCIENCE.289.5476.101
Taming superacids: stabilization of the fullerene cations HC60+ and C60.+.
C. Reed (2000)
10.1002/chem.201104025
Bulk gas-phase acidity.
D. Himmel (2012)
10.1021/JA01346A015
A SERIES OF SIMPLE BASIC INDICATORS. I. THE ACIDITY FUNCTIONS OF MIXTURES OF SULFURIC AND PERCHLORIC ACIDS WITH WATER1
L. Hammett (1932)
10.1016/J.MOLLIQ.2010.03.010
Standard electrode potentials of M+|M couples in non-aqueous solvents (molecular liquids)
G. Gritzner (2010)
10.1103/PHYSREVA.33.554
Absolute half-cell thermodynamics: Electrode potential.
Rockwood (1986)
10.1126/science.1200165
Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement
R. Blankenship (2011)
10.1149/1.2801342
A Combined Computational/Experimental Study on Tertbutyl- and Methoxy-Substituted Benzene Derivatives as Redox Shuttles for Lithium-Ion Cells
R. Wang (2008)
10.1021/JP054088K
Comment on "Accurate experimental values for the free energies of hydration of H+, OH-, and H3O+".
D. Camaioni (2005)
10.1016/J.JCT.2011.11.008
Short answer to the reply from D.P. Zarubin to our comment on “The nature of single-ion activity coefficients calculated from potentiometric measurements on cell with liquid-junction”
G. Wilczek-Vera (2012)
10.1016/J.ORGEL.2009.06.011
Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using 'solvation' model and DFT
P. K. Nayak (2009)
10.1524/zpch.2010.5547
Comparative Study of the Absolute Values of Enthalpy and Gibbs Free Energy of Solvation of Proton from Cluster-ion Solvation data and Direct Determination of the Thermodynamic Parameters of Proton in Aqueous and Non-aqueous Solvents
R. Bhattacharyya (2010)
10.1007/978-1-4613-4560-2
Volume 2 Modern Electrochemistry
J. O. Bockris (1973)
10.1021/JP0605911
Electron affinities of polycyclic aromatic hydrocarbons by means of B3LYP/6-31+G* calculations.
A. Modelli (2006)
10.1021/JP065403L
Single-ion solvation free energies and the normal hydrogen electrode potential in methanol, acetonitrile, and dimethyl sulfoxide.
C. Kelly (2007)



This paper is referenced by
10.1007/s10008-020-04633-y
The Inverted Philosopher’s Stone: how to turn silver to a base metal
V. Radtke (2020)
10.1002/cphc.201900388
Generalization of Acid‐Base Diagrams Based on the Unified pH‐Scale
H. Kahlert (2019)
10.1002/NADC.201490374
Die protoelektrische Potenzialkarte
V. Radtke (2014)
10.1002/anie.202002768
Synthesis and Application of a Perfluorinated Ammoniumyl Radical Cation as a Very Strong Deelectronator
Marcel Schorpp (2020)
10.1021/ACSENERGYLETT.7B00548
Standard Electrode Potentials for the Reduction of CO2 to CO in Acetonitrile–Water Mixtures Determined Using a Generalized Method for Proton-Coupled Electron-Transfer Reactions
Yasuo Matsubara (2017)
10.1002/ANGE.201709057
Grundlegende Bemerkungen zur Azidität
D. Himmel (2018)
10.1002/anie.201707333
The Ideal Ionic Liquid Salt Bridge for the Direct Determination of Gibbs Energies of Transfer of Single Ions, Part I: The Concept.
V. Radtke (2018)
10.1002/ange.202002768
Innocence is Bliss: Synthesis and Application of a very strong Perfluorinated Ammoniumyl Radical Cation in Deelectronation Chemistry.
Ingo Krossing (2020)
10.1002/cphc.201402906
Absolute Brønsted Acidities and pH Scales in Ionic Liquids.
D. Himmel (2015)
10.1002/wcms.1440
Hybrid discrete‐continuum solvation methods
J. R. Pliego (2020)
10.1002/anie.201603913
Coordination Chemistry of Diiodine and Implications for the Oxidation Capacity of the Synergistic Ag(+) /X2 (X=Cl, Br, I) System.
P. J. Malinowski (2016)
10.1002/anie.201709057
Basic Remarks on Acidity.
D. Himmel (2018)
10.1002/anie.201707334
The Ideal Ionic Liquid Salt Bridge for Direct Determination of Gibbs Energies of Transfer of Single Ions, Part II: Evaluation of the Role of Ion Solvation and Ion Mobilities.
Andreas Ermantraut (2018)
10.1021/acsomega.6b00129
Experimental Insight into the Thermodynamics of the Dissolution of Electrolytes in Room-Temperature Ionic Liquids: From the Mass Action Law to the Absolute Standard Chemical Potential of a Proton
Yasuo Matsubara (2016)
10.1039/c5cp03798k
Cluster-continuum quasichemical theory calculation of the lithium ion solvation in water, acetonitrile and dimethyl sulfoxide: an absolute single-ion solvation free energy scale.
Nathália F Carvalho (2015)
10.1002/EJIC.201500221
Dinuclear Zinc and Cobalt Complexes with Imidazolyl and N‐Methylmidazolyl Units and Their Solution Speciation and Redox Properties
Merle Kügler (2015)
10.1039/c5cs00672d
Reactive p-block cations stabilized by weakly coordinating anions
Tobias A Engesser (2016)
10.1002/ANGE.201710782
Die Schöne (WCA) und das (kationische) Biest: Neues aus der Chemie von und mit schwach koordinierenden Anionen
I. Riddlestone (2018)
10.1002/chem.201903485
Proton Thermodynamics in a Protic Ionic Liquid, Ethylammonium Nitrate.
R. Kanzaki (2019)
10.1002/ANGE.202002768
Synthesis and Application of a Perfluorinated Ammoniumyl Radical Cation as a Very Strong Deelectronator.
Marcel Schorpp (2020)
10.1002/anie.201710782
Taming the Cationic Beast: Novel Developments in the Synthesis and Application of Weakly Coordinating Anions.
I. Riddlestone (2018)
10.1002/ZAAC.201600443
New Hexanuclear Niobium Cluster Compounds with Perfluorinated Ligands Made Using Ionic Liquids
D. H. Weiss (2017)
Semantic Scholar Logo Some data provided by SemanticScholar