Online citations, reference lists, and bibliographies.
← Back to Search

Theoretical Evidence For The Utilization Of Low-Valent Main-Group Complexes As Rare-Synthon Equivalents.

Z. Benedek, Balázs Orbán, T. Szilvási
Published 2017 · Medicine, Chemistry

Cite This
Download PDF
Analyze on Scholarcy
Share
We examine by the means of computational chemistry the ability of two phosphasilenes to transfer the phosphinidene moiety to four double bonded organic functional groups (>C=C<, -N=N-, >C=O, and >C=S) in the presence of different bulky ligands. We show that large bulky groups in the reactants can sterically prohibit the otherwise favored association of reactants and phosphasilenes and instead a new phosphinidene transfer reaction can occur. We find that the transfer reaction mechanism is generally present independent from the functional group and by introducing large enough trimethylsilyl or tert-butyl-dimethylsilyl ligands it can be used to transfer phosphinidene to organic functional groups such as thioformaldehydes or diazenes, respectively. We propose that by exploiting the complex bonding nature of low-valent main group complexes they can act as synthetic equivalents of hitherto unknown very reactive synthons. We encourage experimentalists to explore the reactivity of their main-group complexes by varying the size of the bulky substituents on the reactants that can result in new unexpected chemistry.
This paper references
10.1021/OM201246G
Molecular Tailoring: Reaction Path Control with Bulky Substituents
T. Szilvási (2012)
10.1002/ANIE.200504145
Synthesis of a "half"-parent phosphasilene R2Si=PH and its metalation to the corresponding P-zinciophosphasilene [R2Si=PM].
M. Driess (2006)
10.1021/ja300654t
Dispersion Energy Enforced Dimerization of a Cyclic Disilylated Plumbylene
H. Arp (2012)
10.1016/S0040-4039(01)81351-4
2,4,6-Tri-tert-butylphenylphosphene-dimesitylsilene. The first phosphasilaalkene
C. N. Smit (1984)
10.1039/C39950000253
First structural characterization of silicon–arsenic and silicon–phosphorus multiple bonds in silylated silylidene-arsanes and -phosphanes; X-ray structure of a tellura-arsasilirane derivative
M. Driess (1995)
10.1002/anie.201311022
Dative bonds in main-group compounds: a case for more arrows!
G. Frenking (2014)
10.1021/OM201031N
A Remarkable End-On Activation of Diazoalkane and Cleavage of Both C–Cl Bonds of Dichloromethane with a Silylene to a Single Product with Five-Coordinate Silicon Atoms
Sakya S Sen (2012)
10.1039/c5cc04247j
Facile rotation around a silicon-phosphorus double bond enabled through coordination to tungsten.
Nora C. Breit (2015)
10.1021/OM9508851
Synthesis and Unusual Reactivity of Compounds Containing Silicon−Phosphorus and Silicon−Arsenic Double Bonds: New Silylidenephosphanes and -arsanes of the Type R2SiE(SiR3) (E = P, As)
M. Driess (1996)
10.1002/anie.201105610
A P4 chain and cage from silylene-activated white phosphorus.
S. Khan (2011)
10.1021/ci600510j
Basis Set Exchange: A Community Database for Computational Sciences
Karen Schuchardt (2007)
10.1002/chem.201303906
A donor-stabilized zwitterionic "half-parent" phosphasilene and its unusual reactivity towards small molecules.
Kerstin Hansen (2014)
10.1126/science.1160768
A Stable Silicon(0) Compound with a Si=Si Double Bond
Yuzhong Wang (2008)
10.1021/jacs.6b06726
Push-Pull Stabilization of Parent Monochlorosilylenes.
Hunter P Hickox (2016)
10.1021/ja4072699
A fragile zwitterionic phosphasilene as a transfer agent of the elusive parent phosphinidene (:PH).
Kerstin Hansen (2013)
10.1002/ANGE.201508149
Ein beständiges 1,2-Dihydrophosphasilen-Addukt
Kerstin Hansen (2015)
10.1021/ACS.ORGANOMET.7B00155
Theoretical Assessment of Low-Valent Germanium Compounds as Transition Metal Ligands: Can They Be Better than Phosphines or NHCs?
Zsolt Benedek (2017)
10.1021/JO070871S
Pattern recognition in retrosynthetic analysis: snapshots in total synthesis.
R. M. Wilson (2007)
10.1351/pac196714010019
General methods for the construction of complex molecules
E. Corey (1967)
10.1002/ANIE.199104553
The Logic of Chemical Synthesis: Multistep Synthesis of Complex Carbogenic Molecules (Nobel Lecture)†
E. Corey (1991)
10.1021/jacs.6b02824
Activation of 7-Silanorbornadienes by N-Heterocyclic Carbenes: A Selective Way to N-Heterocyclic-Carbene-Stabilized Silylenes.
Dennis Lutters (2016)
10.1002/anie.201508149
A Persistent 1,2-Dihydrophosphasilene Adduct.
Kerstin Hansen (2015)
10.1126/SCIENCE.287.5460.1964
Target-oriented and diversity-oriented organic synthesis in drug discovery.
S. Schreiber (2000)
10.1002/anie.201703672
Facile Phenylphosphinidene Transfer Reactions from Carbene-Phosphinidene Zinc Complexes.
Tetiana Krachko (2017)
10.1002/anie.201308525
From disilene (Si=Si) to phosphasilene (Si=P) and phosphacumulene (P=C=N).
Philipp Willmes (2014)
10.1021/OM3008184
2-Hydro-2-aminophosphasilene with N–Si–P π Conjugation
H. Cui (2013)
10.1063/1.447079
Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets
M. Frisch (1984)
10.1021/ja200462y
An ylide-like phosphasilene and striking formation of a 4π-electron, resonance-stabilized 2,4-disila-1,3-diphosphacyclobutadiene.
S. Inoue (2011)
10.1021/OM4002507
Molecular tailoring: Substituent design for hexagermabenzene
T. Szilvási (2013)
10.1063/1.456153
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
T. H. Dunning (1989)
10.1002/ZAAC.201600286
NHC‐stabilized Silicon(II) Halides: Reactivity Studies with Diazoalkanes and Azides
Marius I Arz (2016)
10.1002/ANGE.201308525
Von Disilen (SiSi) über Phosphasilen (SiP) zum Phosphakumulen (PCN)
Philipp Willmes (2014)
10.1002/anie.201403078
Dative or not dative?
D. Himmel (2014)
10.1021/OM00149A004
Phosphasilenes: synthesis and spectroscopic characterization
C. N. Smit (1987)
10.1021/JA020863N
Tetrakis(trimethylsilyl)tetrahedrane.
G. Maier (2002)
10.1002/ANGE.200504145
Synthese eines “halben” Phosphasilen‐Stammsystems R2SiPH und seine Metallierung zum P‐Zinkio‐phosphasilen [R2SiPM]
M. Driess (2006)
10.1021/jacs.5b01853
An NHC-Stabilized Silicon Analogue of Acylium Ion: Synthesis, Structure, Reactivity, and Theoretical Studies.
S. U. Ahmad (2015)
10.1021/ja807828t
Carbene-stabilized diphosphorus.
Yuzhong Wang (2008)
10.1002/anie.201610498
An Isolable Silicon Dicarbonate Complex from Carbon Dioxide Activation with a Silylone.
Alexander Burchert (2017)
10.1021/CR9904009
Quantum mechanical continuum solvation models.
J. Tomasi (2005)
10.1002/anie.201600701
From a Phosphaketenyl-Functionalized Germylene to 1,3-Digerma-2,4-diphosphacyclobutadiene.
S. Yao (2016)
10.1002/ANGE.19911030504
Die Logik der chemischen Synthese: Vielstufige Synthesen komplexer „carbogener”︁ Moleküle (Nobel‐Vortrag)
E. Corey (1991)
10.1002/ANGE.201300461
Dative Bindungen bei Hauptgruppenelementverbindungen: ein Plädoyer für weniger Pfeile
D. Himmel (2014)
10.1021/ja205369h
Striking stability of a substituted silicon(II) bis(trimethylsilyl)amide and the facile Si-Me bond cleavage without a transition metal catalyst.
Sakya S Sen (2011)
10.1002/ANGE.201311022
Dative Bindungen bei Hauptgruppenelementverbindungen: ein Plädoyer für mehr Pfeile
G. Frenking (2014)
10.1002/anie.201605636
Isolation and Structure of Germylene-Germyliumylidenes Stabilized by N-Heterocyclic Imines.
T. Ochiai (2016)
10.1021/ja301547x
Coordination Chemistry of Cyclic Disilylated Stannylenes and Plumbylenes to Group 4 Metallocenes
H. Arp (2012)
10.1021/OM900310U
A “Push−Pull” Phosphasilene and Phosphagermene and Their Anion-Radicals
V. Lee (2009)
10.1039/c3dt52180j
Molecular tailoring: a possible synthetic route to hexasilabenzene.
Z. Benedek (2014)
10.1002/chem.201402693
New route to access an acyl-functionalized phosphasilene and a four-membered Si-P-C-O heterocycle.
Nora C. Breit (2014)
10.1021/JA00061A034
The first x-ray structure of a phosphasilene: 1,3,4-triphospha-2-sila-1-butene
H. Bender (1993)
10.1021/jacs.6b01018
Addition of Small Electrophiles to N-Heterocyclic-Carbene-Stabilized Disilicon(0): A Revisit of the Isolobal Concept in Low-Valent Silicon Chemistry.
Marius I Arz (2016)
10.1021/ja506824s
Synthesis and unexpected reactivity of germyliumylidene hydride [:GeH]+ stabilized by a bis(N-heterocyclic carbene)borate ligand.
Yun Xiong (2014)
10.1002/ANIE.199110221
1,2,3‐Triphospha‐4‐silabicyclo[l.1.0]butanes from Activated, Stable Phosphasilenes and White Phosphorus
M. Driess (1991)
10.1021/OM9707937
1,3-DIPHOSPHA-2-SILAALLYLIC LITHIUM COMPLEXES AND ANIONS : SYNTHESIS, CRYSTAL STRUCTURES, REACTIVITY, AND BONDING PROPERTIES
D. Lange (1998)
10.1063/1.475007
Density-functional thermochemistry. V. Systematic optimization of exchange-correlation functionals
A. Becke (1997)
10.1021/OM100595A
N-Heterocyclic Germylidenide and Stannylidenide Anions: Group 14 Metal(II) Cyclopentadienide Analogues
William D. Woodul (2010)
10.1039/C4RA14417A
Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs?
Z. Benedek (2015)
10.1002/ANGE.19891010631
Synthese, Struktur und Reaktivität eines 1,3‐Diphospha‐2‐silaallyl‐Anions
E. Niecke (1989)
10.1021/ja9051153
Pi-conjugated phosphasilenes stabilized by fused-ring bulky groups.
Bao-Lin Li (2009)
10.1002/jcc.20495
Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction
S. Grimme (2006)
10.1002/anie.201300461
Dative bonds in main-group compounds: a case for fewer arrows!
D. Himmel (2014)
10.1002/ANGE.200905689
Nucleophile Phosphinidenkomplexe: Synthese und Anwendungen
Halil Aktaş (2010)
10.1002/ANGE.201403078
Dativ oder nicht dativ
D. Himmel (2014)
10.1039/c4cc05181e
A facile access to a novel NHC-stabilized silyliumylidene ion and C-H activation of phenylacetylene.
S. U. Ahmad (2014)
10.1002/ANIE.198907511
Synthesis, Structure, and Reactivity of a 1,3‐Diphospha‐2‐silaallyl Anion
E. Niecke (1989)
10.1021/ja107160g
An N-heterocyclic carbene-disilyne complex and its reactivity toward ZnCl2.
Torahiko Yamaguchi (2010)
10.1002/ANIE.199111301
Intramolecular Base Stabilization of SiN and SiP Compounds and Related Transition‐Metal Silanediyl Complexes
R. Corriu (1991)
10.1002/ANGE.19911030917
Intramolekulare Basenstabilisierung von SiN‐ und SiP‐Verbindungen und verwandten Silandiyl‐Übergangsmetallkomplexen
R. Corriu (1991)
10.1016/0009-2614(93)89151-7
Integral approximations for LCAO-SCF calculations
O. Vahtras (1993)
10.1002/anie.200905689
Nucleophilic phosphinidene complexes: access and applicability.
Halil Aktaş (2010)
10.1002/ANGE.19911030814
1,2,3-Triphospha-4-silabicyclo[1.1.0]butane aus aktivierten, stabilen Phosphasilenen und weißem Phosphor†
M. Driess (1991)



Semantic Scholar Logo Some data provided by SemanticScholar