Online citations, reference lists, and bibliographies.
Please confirm you are human
(Sign Up for free to never see this)
← Back to Search

Superparamagnetic Iron Oxide Nanoparticle–Aptamer Bioconjugates For Combined Prostate Cancer Imaging And Therapy

A. Wang, Vaishali Bagalkot, C. Vasilliou, F. Gu, F. Alexis, L. Zhang, Mariam R Shaikh, Kai P Yuet, M. Cima, R. Langer, P. Kantoff, N. Bander, S. Jon, O. Farokhzad
Published 2008 · Chemistry, Medicine

Save to my Library
Download PDF
Analyze on Scholarcy
Share
ThemajorshortcomingofCombidexisitsinabilitytodetectPCadiseaseoutsideofthelymphnodes.Herein, we report the development of a novel, multifunc-tional, thermally cross-linked SPION (TCL-SPION) that can bothdetect PCa cells, and deliver targeted chemotherapeuticagents directly to the PCa cells. We previously reported theuseoftheA10RNAaptamer (Apt), which bindstheextracellu-lar domain of the prostate-specific membrane antigen (PSMA),to engineer targeted nanoparticles for PCa therapy and imag-ing.
This paper references
10.1002/cmdc.200700121
Co‐Delivery of Hydrophobic and Hydrophilic Drugs from Nanoparticle–Aptamer Bioconjugates
L. Zhang (2007)
Expression of the prostate-specific membrane antigen.
R. Israeli (1994)
10.1158/0008-5472.CAN-04-2550
Nanoparticle-Aptamer Bioconjugates
O. Farokhzad (2004)
10.1148/RADIOL.2283020872
Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and efficacy study.
Y. Anzai (2003)
10.1182/BLOOD-2005-01-0016
Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of t
W. Hiddemann (2005)
10.1016/S0022-5347(01)67620-1
The use and accuracy of cross-sectional imaging and fine needle aspiration cytology for detection of pelvic lymph node metastases before radical prostatectomy.
J. Wolf (1995)
10.2217/17435889.2.2.153
Targeted delivery of multifunctional magnetic nanoparticles.
J. Mccarthy (2007)
228:777. [PubMed: 12954896] Wang et al. Page 6 ChemMedChem
Y Anzai (2003)
10.1016/S0033-8389(05)70152-4
The prostate: MR imaging and spectroscopy. Present and future.
J. Kurhanewicz (2000)
10.2217/17435889.1.1.23
Optical molecular imaging agents for cancer diagnostics and therapeutics.
S. Kumar (2006)
10.1056/NEJMOA011795
CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma
B. E. C. Oiffier (2002)
10.1200/JCO.2004.04.020
Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin's lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up.
M. Czuczman (2004)
10.2217/17435889.2.5.669
Biodegradable, polymeric nanoparticle delivery systems for cancer therapy.
Eric M. Pridgen (2007)
10.1016/0969-8051(96)00074-1
PET and [18F]-FDG in oncology: a clinical update.
P. Conti (1996)
10.1148/RADIOLOGY.162.2.3797645
Prostatic carcinoma: staging by clinical assessment, CT, and MR imaging.
H. Hricak (1987)
10.1148/RADIOLOGY.192.1.8208963
Staging of prostate cancer: results of Radiology Diagnostic Oncology Group project comparison of three MR imaging techniques.
C. Tempany (1994)
10.1073/PNAS.0601755103
Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo.
O. Farokhzad (2006)
10.1148/RADIOLOGY.175.2.2326474
Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging.
R. Weissleder (1990)
10.1021/JA072210I
Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo.
Haerim Lee (2007)
10.1002/IJC.2910620511
Detection and characterization of the prostate‐specific membrane antigen (PSMA) in tissue extracts and body fluids
John K. Trover (1995)
10.1056/NEJMOA022749
Noninvasive detection of clinically occult lymph-node metastases in prostate cancer.
M. Harisinghani (2003)
10.1021/NL061412U
Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems.
N. Nasongkla (2006)
10.1172/JCI32278
ErbB receptors: from oncogenes to targeted cancer therapies.
H. Zhang (2007)
10.1016/J.BIOMATERIALS.2007.01.043
Nanotoxicity of iron oxide nanoparticle internalization in growing neurons.
T. R. Pisanic (2007)
10.2217/17435889.1.2.209
Quantum dots and multifunctional nanoparticles: new contrast agents for tumor imaging.
Matthew N. Rhyner (2006)
10.1021/NL071546N
Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer.
Vaishali Bagalkot (2007)
10.1056/NEJMRA043186
Trastuzumab--mechanism of action and use in clinical practice.
C. Hudis (2007)
10.1021/LA0502084
Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate.
S. H. Kim (2005)
10.1126/science.1125949
Molecular Imaging in Cancer
R. Weissleder (2006)
10.1148/RADIOLOGY.207.3.9609907
Lymph node metastases: safety and effectiveness of MR imaging with ultrasmall superparamagnetic iron oxide particles--initial clinical experience.
M. F. Bellin (1998)
Page 5 ChemMedChem
MJ Piccart-Gebhart (2005)
Fair WR, Heston WD
RS Israeli (1994)
10.1056/NEJMOA052306
Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer.
M. Piccart-Gebhart (2005)
10.1002/(SICI)1097-0045(19970301)30:4<232::AID-PROS2>3.0.CO;2-N
Location of prostate‐specific membrane antigen in the LNCaP prostate carcinoma cell line
J. Troyer (1997)
10.1002/SMLL.200600009
Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery.
N. Kohler (2006)
10.1056/NEJMOA052122
Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer.
E. H. Romond (2005)
10.1002/ANIE.200602251
An aptamer-doxorubicin physical conjugate as a novel targeted drug-delivery platform.
Vaishali Bagalkot (2006)
10.1371/journal.pmed.0010066
Sensitive, Noninvasive Detection of Lymph Node Metastases
M. Harisinghani (2004)



This paper is referenced by
10.1117/12.841359
Biodegradable near-infrared plasmonic nanoclusters for biomedical applications
J. Tam (2010)
10.33915/etd.7080
Paradoxical Roles of Nanoparticles in Cancer Therapeutics and Carcinogenesis
E. Despeaux (2016)
10.1007/s11051-016-3496-9
Photoactive nanocomplex formed from chlorophyll assembly on TMA-coated iron oxide nanoparticles
Sibel Barbaros (2016)
10.1007/s00432-014-1767-3
Cancer active targeting by nanoparticles: a comprehensive review of literature
Remon Bazak (2014)
10.1021/nn900350p
A conversation with Robert Langer: pioneering biomedical scientist and engineer. Interview by Paul S. Weiss.
R. Langer (2009)
10.1016/j.biomaterials.2011.01.032
Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy.
P. Huang (2011)
10.1016/j.ijpharm.2017.03.086
Aptamer delivery of siRNA, radiopharmaceutics and chemotherapy agents in cancer.
C. E. D. de Almeida (2017)
10.1016/j.nano.2017.01.015
Folate-targeted nanoparticle delivery of androgen receptor shRNA enhances the sensitivity of hormone-independent prostate cancer to radiotherapy.
Xingding Zhang (2017)
10.1155/2012/420364
Molecular Imaging in Tracking Tumor Stem-Like Cells
Tian-dong Xia (2012)
Development of a Single Stranded DNA Aptamer as a Molecular Probe for LNCap Cells Using Cell-SELEX
F. Almasi (2016)
10.1016/j.nano.2016.02.019
Ultrasmall inorganic nanoparticles: State-of-the-art and perspectives for biomedical applications.
K. Zarschler (2016)
10.2217/nnm.13.146
Thermal potentiation of chemotherapy by magnetic nanoparticles.
M. Torres-Lugo (2013)
10.1016/j.canlet.2013.04.032
Multifunctional superparamagnetic iron oxide nanoparticles: promising tools in cancer theranostics.
P. B. Santhosh (2013)
10.3390/biomedicines3030248
Aptamers and Their Significant Role in Cancer Therapy and Diagnosis
Joy Sebastian Prakash (2015)
7 Aptamer-Nanoparticle Bioconjugates for Drug Delivery
V. C. Özalp (2018)
10.1016/j.addr.2018.04.007
Aptamer chemistry
Pascal Röthlisberger (2018)
10.1007/s00216-013-7265-7
Electrokinetic characterization of superparamagnetic nanoparticle–aptamer conjugates: design of new highly specific probes for miniaturized molecular diagnostics
M. Girardot (2013)
10.1007/s40336-014-0053-3
Nanomedicine technology: current achievements and new trends
E. Fattal (2014)
10.1093/NSR/NWV001
Cell-SELEX-based aptamer-conjugated nanomaterials for cancer diagnosis and therapy
Hong-Min Meng (2015)
10.7150/thno.10257
Aptamers: Active Targeting Ligands for Cancer Diagnosis and Therapy
Xu Wu (2015)
10.1016/j.nano.2012.05.009
Nanoparticle therapeutics for prostate cancer treatment.
V. Sanna (2012)
Charakterisierung von RNA-Aptameren mit Spezifität für den humanen Interleukin-6-Rezeptor
Katja Eydeler (2011)
10.3892/ol.2014.2840
Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer
Y. Guo (2015)
10.1097/CAD.0b013e32834a4554
Targeting of nanoparticles in cancer: drug delivery and diagnostics
M. Talekar (2011)
10.1021/cr2002596
Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles.
M. Mahmoudi (2012)
10.1016/j.msec.2019.01.078
Polypseudorotaxane functionalized magnetic nanoparticles as a dual responsive carrier for roxithromycin delivery.
Y. Ke (2019)
10.3390/ijms13033341
Generating Aptamers by Cell-SELEX for Applications in Molecular Medicine
Mao Ye (2012)
10.4155/TDE.11.48
Targeted magnetic hyperthermia.
R. Stone (2011)
Synthesis and biodistribution of novel magnetic- poly(HEMA-APH) nanopolymer radiolabeled with iodine- 131 and investigation its fate in vivo for cancer therapy
Hasan Demirog (2013)
10.1002/smll.201201531
Applications and potential toxicity of magnetic iron oxide nanoparticles.
G. Liu (2013)
10.1039/C1JM13942H
Solventless thermal decomposition of ferrocene as a new approach for one-step synthesis of magnetite nanocubes and nanospheres
Daniel Amara (2012)
10.1016/j.addr.2011.10.002
Aptamer-conjugated nanomaterials and their applications.
L. Yang (2011)
See more
Semantic Scholar Logo Some data provided by SemanticScholar