Online citations, reference lists, and bibliographies.
← Back to Search

Effect Of The Structure Of Cholesterol-based Tethered Bilayer Lipid Membranes On Ionophore Activity.

James R. Kendall, B. Johnson, P. Symonds, G. Imperato, R. Bushby, J. Gwyer, Cees van Berkel, S. Evans, L. Jeuken
Published 2010 · Chemistry, Medicine

Cite This
Download PDF
Analyze on Scholarcy
Share
Tethered bilayer lipid membranes (tBLM) are formed on 1) pure tether lipid triethyleneoxythiol cholesterol (EO(3)C) or on 2) mixed self-assembled monolayers (SAMs) of EO(3)C and 6-mercaptohexanol (6MH). While EO(3)C is required to form a tBLM with high resistivity, 6MH dilutes the cholesterol content in the lower leaflet of the bilayer forming ionic reservoirs required for submembrane hydration. Here we show that these ionic reservoirs are required for ion transport through gramicidin or valinomycin, most likely due to the thermodynamic requirements of ions to be solvated once transported through the membrane. Unexpectedly, electrochemical impedance spectroscopy (EIS) shows an increase of capacitance upon addition of gramicidin, while addition of valinomycin decreases the membrane resistance in the presence of K(+) ions. We hypothesise that this is due to previously reported phase separation of EO(3)C and 6MH on the surface. This results in ionic reservoirs on the nanometre scale, which are not fully accounted for by the equivalent circuits used to describe the system.
This paper references
10.1007/BF01869959
Blocking of the gramicidin channel by divalent cations
E. Bamberg (2005)
10.1021/LA970785V
Self-Assembled Monolayers on Oxidized Metals. 2. Gold Surface Oxidative Pretreatment, Monolayer Properties, and Depression Formation
Hannoch Ron (1998)
10.1116/1.2709308
Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes
D. McGillivray (2007)
10.1039/B901674K
Equilibrium distribution of K+ ions in the hydrophilic spacer of tethered bilayer lipid membranes
Lucia Becucci (2009)
10.1016/S0006-3495(96)79211-1
Structure and dynamics of a proton wire: a theoretical study of H+ translocation along the single-file water chain in the gramicidin A channel.
R. Pomès (1996)
Inhibition of lecithin-cholesterol acyltransferase by diphytanoyl phosphatidylcholine.
H. Pownall (1987)
10.1021/la900907d
In situ PM-IRRAS studies of an archaea analogue thiolipid assembled on a au(111) electrode surface.
J. Leitch (2009)
10.1016/j.jcis.2008.02.064
Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity.
S. R. Jadhav (2008)
10.1021/LA0342060
Tethered lipid Bilayers on ultraflat gold surfaces
R. Naumann (2003)
10.1016/j.surfrep.2006.06.001
Solid supported lipid bilayers: From biophysical studies to sensor design
Edward T. Castellana (2006)
10.1007/S00216-006-0305-9
Transport across artificial membranes–an analytical perspective
A. Janshoff (2006)
10.1021/LA051771P
Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides.
Lizhong He (2005)
10.1002/ANGE.200390048
Archaea-analoge Thiolipide für gestützte Lipiddoppelschichtmembranen auf ultraglatten Goldoberflächen†
S. Schiller (2003)
10.1021/LA970241T
Surface-conditioning effect of gold substrates on octadecanethiol self-assembled monolayer growth
T. Ishida (1997)
10.1021/LA7030279
Incorporation of alpha-hemolysin in different tethered bilayer lipid membrane architectures.
I. K. Vockenroth (2008)
10.1016/S0006-3495(02)75576-8
Molecular mechanism of H+ conduction in the single-file water chain of the gramicidin channel.
R. Pomès (2002)
10.1021/CR00005A008
Contribution of theoretical chemistry to the study of ion transport through membranes
A. Pullman (1991)
10.1006/JCIS.2000.6910
Phosphatidylserine/Cholesterol Bilayers Supported on a Polycation/Alkylthiol Layer Pair.
Zhang (2000)
10.1016/S0022-0728(03)00013-5
Kinetics of valinomycin-mediated K+ ion transport through tethered bilayer lipid membranes
R. Naumann (2003)
10.1126/SCIENCE.1700867
Kinetics of gramicidin channel formation in lipid bilayers: transmembrane monomer association.
A. O'connell (1990)
10.1529/biophysj.107.122887
AFM study on the electric-field effects on supported bilayer lipid membranes.
L. Jeuken (2008)
10.1021/LA960805D
Kinetics of the unrolling of small unilamellar phospholipid vesicles onto self-assembled monolayers
L. Williams (1997)
10.1002/PSSA.200622464
Supported membranes as biofunctional interfaces and smart biosensor platforms
M. Tanaka (2006)
10.1038/237042A0
Mortality of Thick-billed Murres in the West Greenland Salmon Fishery
C. Tull (1972)
10.1016/S0040-4020(97)00698-4
The design and synthesis of simple molecular tethers for binding biomembranes to a gold surface
N. Boden (1997)
10.1038/NEWBIO237042A0
Molecular mechanism for the interaction of phospholipid with cholesterol.
J. Rothman (1972)
10.1016/S1367-5931(01)00269-1
Functional tethered membranes.
E. K. Sinner (2001)
10.1016/S0006-3495(01)76238-8
Conducting gramicidin channel activity in phospholipid monolayers.
A. Nelson (2001)
10.1016/S0006-3495(02)75447-7
Thallous ion movements through gramicidin channels incorporated in lipid monolayers supported by mercury.
L. Becucci (2002)
10.1002/ANIE.200390080
Archaea analogue thiolipids for tethered bilayer lipid membranes on ultrasmooth gold surfaces.
S. Schiller (2003)
10.1016/J.ELECTACTA.2008.04.043
Potassium ion transport by gramicidin and valinomycin across a Ag(111)-supported tethered bilayer lipid membrane
L. Becucci (2008)
10.1016/J.JELECHEM.2004.09.032
Incorporation of channel-forming peptides in a Hg-supported lipid bilayer
L. Becucci (2005)
10.1016/J.BIOS.2007.09.014
Voltage-induced gating of the mechanosensitive MscL ion channel reconstituted in a tethered lipid bilayer membrane.
Martin G I Andersson (2008)
10.1016/J.CBPA.2007.09.020
Model membrane systems and their applications.
Y. M. Chan (2007)
10.1021/la800040w
Electrical manipulation of supported lipid membranes by embedded electrodes.
B. Jackson (2008)
10.1021/LA981557J
Electrochemical Impedance Study of Tl+ Reduction through Gramicidin Channels in Self-Assembled Gramicidin-Modified Dioleoylphosphatidylcholine Monolayers on Mercury Electrodes
M. Rueda (1999)
10.1016/J.BIOELECHEM.2006.05.009
The effect of the ionophore valinomycin on biomimetic solid supported lipid DPPTE/EPC membranes.
L. Rose (2007)
10.1021/LA047732F
Direct electrochemical interaction between a modified gold electrode and a bacterial membrane extract.
L. Jeuken (2005)
10.1038/42432
A biosensor that uses ion-channel switches
B. Cornell (1997)
10.1016/J.SNB.2007.01.014
Phase separation in mixed self-assembled monolayers and its effect on biomimetic membranes
L. Jeuken (2007)
10.1021/JA056972U
Redox enzymes in tethered membranes.
L. Jeuken (2006)
10.1002/ELAN.200603855
Label-Free Impedance Biosensors: Opportunities and Challenges.
J. Daniels (2007)
10.1146/ANNUREV.PC.25.100174.000303
Molecular Mechanisms of ION Transport in Lipid Membranes
S. Hladky (1974)



This paper is referenced by
10.3389/fmats.2018.00055
Tethered Membrane Architectures—Design and Applications
J. Andersson (2018)
10.1088/0957-4484/24/46/465301
Simulation and fabrication of a new novel 3D injectable biosensor for high throughput genomics and proteomics in a lab-on-a-chip device.
R. Esfandyarpour (2013)
10.1021/acs.jpcb.6b01435
Monitoring the Transmembrane Proton Gradient Generated by Cytochrome bo3 in Tethered Bilayer Lipid Membranes Using SEIRA Spectroscopy.
Swantje Wiebalck (2016)
10.1021/la204054g
Electrochemical impedance spectroscopy of tethered bilayer membranes.
G. Valincius (2012)
10.1016/j.apsusc.2020.145268
Solvent effects on composition and structure of thiolipid molecular anchors for tethering phospholipid bilayers
Saulius Tumenas (2020)
10.1017/9781108526227
Dynamics of Engineered Artificial Membranes and Biosensors
William Hoiles (2018)
10.1016/J.SNB.2012.11.064
Microneedle Biosensor: A Method for Direct Label-free Real Time Protein Detection.
R. Esfandyarpour (2013)
10.1002/ANGE.201203214
Kombinierte elektrochemische und oberflächenverstärkte IR‐absorptionsspektroskopische Untersuchung von Gramicidin A in trägerfixierten Lipiddoppelschichtmembranen
Jacek Kozuch (2012)
10.1016/j.chemphyslip.2014.06.002
Conditions for liposome adsorption and bilayer formation on BSA passivated solid supports.
Elsa I Silva-López (2014)
10.1021/la202847r
Tethered bilayer lipid membranes on mixed self-assembled monolayers of a novel anchoring thiol: impact of the anchoring thiol density on bilayer formation.
Hajra Basit (2011)
10.1016/j.colsurfb.2015.10.048
Phospholipid/cholesterol/decanethiol mixtures for direct assembly of immunosensing interfaces.
I. Almeida (2015)
10.1039/c4cp00167b
Voltage-dependent structural changes of the membrane-bound anion channel hVDAC1 probed by SEIRA and electrochemical impedance spectroscopy.
J. Kozuch (2014)
Bio)funcionalização de superfícies nanoestruturadas para eletrocatálise e desenvolvimento de biossensores eletroquímicos e óticos
Inês Bela Borralho Almeida (2016)
Development of a tethered biomembrane biosensing platformfor the incorporation of ion channels
James R. Kendall (2011)
10.1016/J.JELECHEM.2018.12.038
Rapid and sensitive electrochemical label free ion channel, membrane protein and DNA sensing on surface supported liposome-gold nanoparticle platform
K. P. Divya (2019)
10.1021/la504163s
New Poly(amino acid methacrylate) Brush Supports the Formation of Well-Defined Lipid Membranes
A. C. Blakeston (2015)
10.1002/anie.201203214
Combined electrochemistry and surface-enhanced infrared absorption spectroscopy of gramicidin A incorporated into tethered bilayer lipid membranes.
J. Kozuch (2012)
10.14279/depositonce-7273
Investigation of membrane-active peptides and proteins by vibrational spectroscopy
E. Forbrig (2018)
10.1016/J.ELECTACTA.2013.07.117
Lipid bilayers supported on bare and modified gold – Formation, characterization and relevance of lipid rafts
J. T. Marquês (2014)
10.3390/membranes6020030
Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function
J. Andersson (2016)
10.1016/j.bioelechem.2016.07.002
Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
S. Maher (2016)
10.1021/jp205852u
Orientational control over nitrite reductase on modified gold electrode and its effects on the interfacial electron transfer.
Lukasz Krzemiński (2011)
hospholipid / cholesterol / decanethiol mixtures for direct assembly of mmunosensing interfaces
. Almeidaa (2015)
10.1039/c7cc01154g
Supramolecular electrode assemblies for bioelectrochemistry
Theodoros Laftsoglou (2017)
10.1016/j.bbamem.2020.183334
Real-time monitoring of heat transfer between gold nanoparticles and tethered bilayer lipid membranes.
Amani Alghalayini (2020)
10.1021/la503086a
A biomimetic platform to study the interactions of bioelectroactive molecules with lipid nanodomains.
J. T. Marquês (2014)
10.1039/C2SM06738B
Biomimetic membrane rafts stably supported on unmodified gold
J. T. Marquês (2012)
10.14279/DEPOSITONCE-6921
Spectroelectrochemical study of biomolecules in artificial membrane systems
Barbara Daiana Gonzalez (2018)
Semantic Scholar Logo Some data provided by SemanticScholar