← Back to Search

Get Citationsy

DOI: 10.1002/jgt.22388

# Cubic Vertices In Planar Hypohamiltonian Graphs

Published 2019 · Mathematics, Computer Science

Reduce the time it takes to create your bibliography by a factor of 10 by using the world’s favourite reference manager

Time to take this seriously.

Thomassen showed in 1978 that every planar hypohamiltonian graph contains a cubic vertex. Equivalently, a planar graph with minimum degree at least 4 in which every vertex‐deleted subgraph is hamiltonian, must be itself hamiltonian. By applying work of Brinkmann and the author, we extend this result in three directions. We prove that (i) every planar hypohamiltonian graph contains at least four cubic vertices, (ii) every planar almost hypohamiltonian graph contains a cubic vertex, which is not the exceptional vertex (solving a problem of the author raised in J. Graph Theory [79 (2015) 63–81]), and (iii) every hypohamiltonian graph with crossing number 1 contains a cubic vertex. Furthermore, we settle a recent question of Thomassen by proving that asymptotically the ratio of the minimum number of cubic vertices to the order of a planar hypohamiltonian graph vanishes.