Online citations, reference lists, and bibliographies.

Numerical Study Of A Conservative Weighted Compact Difference Scheme For The Symmetric Regularized Long Wave Equations

Shuguang Li
Published 2019 · Mathematics

Cite This
Download PDF
Analyze on Scholarcy
Share
This paper references
10.1016/j.amc.2007.01.105
Conservative schemes for the symmetric Regularized Long Wave equations
T. Wang (2007)
10.1088/0305-4470/22/18/020
New similarity reductions and Painleve analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations
P. Clarkson (1989)
10.1186/S13661-014-0259-3
Existence and nonexistence of solutions for a generalized Boussinesq equation
Ying Wang (2015)
10.1016/j.matcom.2014.06.005
Numerical simulation of the modified regularized long wave equation by split least-squares mixed finite element method
Fuzheng Gao (2015)
10.1002/NUM.21979
Fourth‐order compact difference schemes for 1D nonlinear Kuramoto–Tsuzuki equation
Xiuling Hu (2015)
10.1016/j.amc.2014.07.075
A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation
B. Wongsaijai (2014)
10.1016/j.amc.2007.11.039
A new conservative finite difference scheme for the Rosenau equation
K. Omrani (2008)
10.1134/S096554251603012X
Long-time convergence of numerical approximations for 2D GBBM equation
Li Shu-guang (2016)
10.1016/J.APM.2014.04.062
Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation
Jinsong Hu (2014)
10.1155/2011/651642
C-N Difference Schemes for Dissipative Symmetric Regularized Long Wave Equations with Damping Term
Jinsong Hu (2011)
10.1016/j.amc.2015.09.069
Numerical implementation for solving the symmetric regularized long wave equation
S. Yimnet (2016)
10.1080/00207160.2015.1085976
Numerical solutions of two-dimensional unsteady convection–diffusion problems using modified bi-cubic B-spline finite elements
R. C. Mittal (2017)
10.1002/NUM.21826
Conservative compact difference schemes for the coupled nonlinear schrödinger system
Xiuling Hu (2014)
10.1155/2015/195120
Discrete-Time Sliding Mode Control for Uncertain Networked System Subject to Time Delay
S. C. Garcia (2015)
10.1007/s10915-013-9757-1
Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension
Tingchun Wang (2014)
10.1063/1.864487
A symmetric regularized‐long‐wave equation
C. Seyler (1984)
10.1016/j.camwa.2016.09.010
Numerical analysis for fourth-order compact conservative difference scheme to solve the 3D Rosenau-RLW equation
Shuguang Li (2016)
10.1137/0732083
Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation
S. Li (1995)
10.1016/j.amc.2013.06.059
Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation
Tingchun Wang (2013)
10.1016/0096-3003(94)00152-T
Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme
Z. Fei (1995)
10.1016/j.camwa.2014.05.019
The numerical solution of nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation via the meshless method of radial basis functions
M. Dehghan (2014)
10.1080/15502287.2015.1011812
Numerical Solutions of Symmetric Regularized Long Wave Equations Using Collocation of Cubic B-splines Finite Element
Ramesh Chand Mittal (2015)
10.1016/j.cpc.2010.03.015
Numerical solution of GRLW equation using Sinc-collocation method
R. Mokhtari (2010)
10.1016/j.amc.2013.03.076
A decoupled and conservative difference scheme with fourth-order accuracy for the Symmetric Regularized Long Wave equations
Tao Nie (2013)
10.1007/S10255-003-0095-1
Approximate Inertial Manifolds to the Generalized Symmetric Regularized Long Wave Equations with Damping Term
B. Guo (2003)
10.1016/J.JMAA.2013.10.038
Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation
T. Wang (2014)
10.1080/00207160.2014.920834
Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines
R. C. Mittal (2015)
10.1016/J.APM.2011.08.022
On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation
Xintian Pan (2012)
10.1080/15502287.2014.929194
A Collocation Method for Numerical Solutions of Coupled Burgers’ Equations
Ramesh Chand Mittal (2014)
10.1016/j.amc.2004.09.027
A finite difference scheme for generalized regularized long-wave equation
Luming Zhang (2005)
10.1016/S0307-904X(01)00084-1
Numerical solution of RLW equation using linear finite elements within Galerkin's method
A. Dogan (2002)
10.1016/J.NA.2013.07.003
High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein–Gordon equation
Xintian Pan (2013)
10.1016/j.amc.2011.10.020
Mixed finite element analysis for dissipative SRLW equations with damping term
Youcai Xu (2012)
10.1016/j.jcp.2013.03.007
Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions
T. Wang (2013)
10.1108/EC-04-2014-0067
Numerical solutions of two-dimensional Burgers’ equations using modified Bi-cubic B-spline finite elements
R. C. Mittal (2015)
10.1002/NUM.21925
A three‐level linearized compact difference scheme for the Ginzburg–Landau equation
Zhao-peng Hao (2015)
10.1016/J.CNSNS.2007.07.001
The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations
Fang Shao-mei (2009)
10.1007/S10255-019-0818-6
Remarks on Fractional ID-k-factor-critical Graphs
Sizhong Zhou (2019)
10.1007/S11425-011-4290-X
A three level linearized compact difference scheme for the Cahn-Hilliard equation
J. Li (2012)



This paper is referenced by
Semantic Scholar Logo Some data provided by SemanticScholar