DOI: 10.1002/num.22285

# Numerical Study Of A Conservative Weighted Compact Difference Scheme For The Symmetric Regularized Long Wave Equations

Shuguang Li

Published 2019 · Mathematics

This paper references

10.1016/j.amc.2007.01.105

Conservative schemes for the symmetric Regularized Long Wave equations

T. Wang (2007)

10.1088/0305-4470/22/18/020

New similarity reductions and Painleve analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations

P. Clarkson (1989)

10.1186/S13661-014-0259-3

Existence and nonexistence of solutions for a generalized Boussinesq equation

Ying Wang (2015)

10.1016/j.matcom.2014.06.005

Numerical simulation of the modified regularized long wave equation by split least-squares mixed finite element method

Fuzheng Gao (2015)

10.1002/NUM.21979

Fourth‐order compact difference schemes for 1D nonlinear Kuramoto–Tsuzuki equation

Xiuling Hu (2015)

10.1016/j.amc.2014.07.075

A three-level average implicit finite difference scheme to solve equation obtained by coupling the Rosenau-KdV equation and the Rosenau-RLW equation

B. Wongsaijai (2014)

10.1016/j.amc.2007.11.039

A new conservative finite difference scheme for the Rosenau equation

K. Omrani (2008)

10.1134/S096554251603012X

Long-time convergence of numerical approximations for 2D GBBM equation

Li Shu-guang (2016)

10.1016/J.APM.2014.04.062

Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation

Jinsong Hu (2014)

10.1155/2011/651642

C-N Difference Schemes for Dissipative Symmetric Regularized Long Wave Equations with Damping Term

Jinsong Hu (2011)

10.1016/j.amc.2015.09.069

Numerical implementation for solving the symmetric regularized long wave equation

S. Yimnet (2016)

10.1080/00207160.2015.1085976

Numerical solutions of two-dimensional unsteady convection–diffusion problems using modified bi-cubic B-spline finite elements

R. C. Mittal (2017)

10.1002/NUM.21826

Conservative compact difference schemes for the coupled nonlinear schrödinger system

Xiuling Hu (2014)

10.1155/2015/195120

Discrete-Time Sliding Mode Control for Uncertain Networked System Subject to Time Delay

S. C. Garcia (2015)

10.1007/s10915-013-9757-1

Optimal Point-Wise Error Estimate of a Compact Difference Scheme for the Coupled Gross–Pitaevskii Equations in One Dimension

Tingchun Wang (2014)

10.1063/1.864487

A symmetric regularized‐long‐wave equation

C. Seyler (1984)

10.1016/j.camwa.2016.09.010

Numerical analysis for fourth-order compact conservative difference scheme to solve the 3D Rosenau-RLW equation

Shuguang Li (2016)

10.1137/0732083

Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation

S. Li (1995)

10.1016/j.amc.2013.06.059

Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation

Tingchun Wang (2013)

10.1016/0096-3003(94)00152-T

Numerical simulation of nonlinear Schro¨dinger systems: a new conservative scheme

Z. Fei (1995)

10.1016/j.camwa.2014.05.019

The numerical solution of nonlinear high dimensional generalized Benjamin-Bona-Mahony-Burgers equation via the meshless method of radial basis functions

M. Dehghan (2014)

10.1080/15502287.2015.1011812

Numerical Solutions of Symmetric Regularized Long Wave Equations Using Collocation of Cubic B-splines Finite Element

Ramesh Chand Mittal (2015)

10.1016/j.cpc.2010.03.015

Numerical solution of GRLW equation using Sinc-collocation method

R. Mokhtari (2010)

10.1016/j.amc.2013.03.076

A decoupled and conservative difference scheme with fourth-order accuracy for the Symmetric Regularized Long Wave equations

Tao Nie (2013)

10.1007/S10255-003-0095-1

Approximate Inertial Manifolds to the Generalized Symmetric Regularized Long Wave Equations with Damping Term

B. Guo (2003)

10.1016/J.JMAA.2013.10.038

Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation

T. Wang (2014)

10.1080/00207160.2014.920834

Numerical solutions of generalized Burgers–Fisher and generalized Burgers–Huxley equations using collocation of cubic B-splines

R. C. Mittal (2015)

10.1016/J.APM.2011.08.022

On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation

Xintian Pan (2012)

10.1080/15502287.2014.929194

A Collocation Method for Numerical Solutions of Coupled Burgers’ Equations

Ramesh Chand Mittal (2014)

10.1016/j.amc.2004.09.027

A finite difference scheme for generalized regularized long-wave equation

Luming Zhang (2005)

10.1016/S0307-904X(01)00084-1

Numerical solution of RLW equation using linear finite elements within Galerkin's method

A. Dogan (2002)

10.1016/J.NA.2013.07.003

High-order linear compact conservative method for the nonlinear Schrödinger equation coupled with the nonlinear Klein–Gordon equation

Xintian Pan (2013)

10.1016/j.amc.2011.10.020

Mixed finite element analysis for dissipative SRLW equations with damping term

Youcai Xu (2012)

10.1016/j.jcp.2013.03.007

Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions

T. Wang (2013)

10.1108/EC-04-2014-0067

Numerical solutions of two-dimensional Burgers’ equations using modified Bi-cubic B-spline finite elements

R. C. Mittal (2015)

10.1002/NUM.21925

A three‐level linearized compact difference scheme for the Ginzburg–Landau equation

Zhao-peng Hao (2015)

10.1016/J.CNSNS.2007.07.001

The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations

Fang Shao-mei (2009)

10.1007/S10255-019-0818-6

Remarks on Fractional ID-k-factor-critical Graphs

Sizhong Zhou (2019)

10.1007/S11425-011-4290-X

A three level linearized compact difference scheme for the Cahn-Hilliard equation

J. Li (2012)

This paper is referenced by

10.1002/num.22436

A compact finite difference scheme for the fourth‐order time‐fractional integro‐differential equation with a weakly singular kernel

Da Xu (2020)

10.1016/j.apnum.2020.03.022

A dissipative finite difference Fourier pseudo-spectral method for the symmetric regularized long wave equation with damping mechanism

Bingquan Ji (2020)

10.1080/00036811.2019.1692136

Numerical analysis of a new conservative scheme for the 2D generalized Rosenau-RLW equation

Xiao-Feng Wang (2019)